摘要
为提高风电功率预测精度,提出一种结合完全集合经验模态分解(CEEMD)、改进蜻蜓算法(IDA)和支持向量机(SVM)的风电功率短期预测模型。首先,使用CEEMD方法对风电功率原始数据进行预处理,将非平稳信号分解为多个子序列,从而提高数据的稳定性,改善数据质量。其次,在蜻蜓算法中引入反向学习策略,以改善算法的收敛性能,形成的IDA用于SVM参数的寻优。最后,利用IDA优化后的SVM构建预测模型。实例仿真结果及对比实验表明:本文使用的方法能有效地提高风电功率的预测准确率,有一定的优越性。
A short-term wind power prediction model combining complementary ensemble empirical mode decomposition(CEEMD),improved dragonfly algorithm(IDA)and support vector machine(SVM)is proposed.First,the CEEMD method is used to preprocess the original data of wind power,and the non-stationary signal is decomposed into multiple subsequences.Therefore,the stability and quality of data are improved.Second,a reverse learning strategy is introduced into the dragonfly algorithm to improve the convergence performance of the algorithm.The IDA is used for parameter optimization.Finally,the prediction model is established with the SVM optimized by the IDA.The simulation results and comparative experiments show that the CEEMD-IDA-SVM method can effectively improve the prediction accuracy of wind power and has certain advantages.
作者
郭韶昕
陈祥
周枫
GUO Shaoxin;CHEN Xiang;ZHOU Feng(Production Management Department,Beijing Jingneng Clean Energy Power Co.,Ltd.,Inner Mongolia Branch,Hohhot 010070,Inner Mongolia,China;Technology Department,PRACTEK Technology Co.,Ltd.,Shanghai 201315,China)
出处
《上海电机学院学报》
2022年第6期339-345,共7页
Journal of Shanghai Dianji University
关键词
风电功率预测
完全集合经验模态分解
蜻蜓算法
支持向量机
反向学习
wind power prediction
complementary ensemble empirical mode decomposition(CEEMD)
improved dragonfly algorithm(IDA)
support vector machine(SVM)
opposition-based learning