期刊文献+

基于CEEMD-IDA-SVM的风电功率短期预测 被引量:1

Short-term wind power prediction based on CEEMD-IDA-SVM
下载PDF
导出
摘要 为提高风电功率预测精度,提出一种结合完全集合经验模态分解(CEEMD)、改进蜻蜓算法(IDA)和支持向量机(SVM)的风电功率短期预测模型。首先,使用CEEMD方法对风电功率原始数据进行预处理,将非平稳信号分解为多个子序列,从而提高数据的稳定性,改善数据质量。其次,在蜻蜓算法中引入反向学习策略,以改善算法的收敛性能,形成的IDA用于SVM参数的寻优。最后,利用IDA优化后的SVM构建预测模型。实例仿真结果及对比实验表明:本文使用的方法能有效地提高风电功率的预测准确率,有一定的优越性。 A short-term wind power prediction model combining complementary ensemble empirical mode decomposition(CEEMD),improved dragonfly algorithm(IDA)and support vector machine(SVM)is proposed.First,the CEEMD method is used to preprocess the original data of wind power,and the non-stationary signal is decomposed into multiple subsequences.Therefore,the stability and quality of data are improved.Second,a reverse learning strategy is introduced into the dragonfly algorithm to improve the convergence performance of the algorithm.The IDA is used for parameter optimization.Finally,the prediction model is established with the SVM optimized by the IDA.The simulation results and comparative experiments show that the CEEMD-IDA-SVM method can effectively improve the prediction accuracy of wind power and has certain advantages.
作者 郭韶昕 陈祥 周枫 GUO Shaoxin;CHEN Xiang;ZHOU Feng(Production Management Department,Beijing Jingneng Clean Energy Power Co.,Ltd.,Inner Mongolia Branch,Hohhot 010070,Inner Mongolia,China;Technology Department,PRACTEK Technology Co.,Ltd.,Shanghai 201315,China)
出处 《上海电机学院学报》 2022年第6期339-345,共7页 Journal of Shanghai Dianji University
关键词 风电功率预测 完全集合经验模态分解 蜻蜓算法 支持向量机 反向学习 wind power prediction complementary ensemble empirical mode decomposition(CEEMD) improved dragonfly algorithm(IDA) support vector machine(SVM) opposition-based learning
  • 相关文献

参考文献8

二级参考文献117

  • 1袁智勇,白浩,黄安迪,雷金勇,赵显秋.基于EEMD-SSA和改进ELM的短期风电功率预测方法[J].水利水电技术(中英文),2021(S01):323-331. 被引量:5
  • 2王粟,江鑫,曾亮,常雨芳.基于VMD-DESN-MSGP模型的超短期光伏功率预测[J].电网技术,2020,44(3):917-926. 被引量:47
  • 3丁明,张立军,吴义纯.基于时间序列分析的风电场风速预测模型[J].电力自动化设备,2005,25(8):32-34. 被引量:185
  • 4于德介,程军圣,杨宇.机械故障诊断的Hilbert-Huang变换方法[M].北京:科学出版社,2007.
  • 5刘永前,韩爽,杨勇平,高辉.提前三小时风电机组出力组合预报研究[J].太阳能学报,2007,28(8):839-843. 被引量:21
  • 6Huang N E,Shen Z,Long S R,et al.The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis,Proc.Roy.Soc.London,1998,454:903-995.
  • 7Huang N E,Shen Z,Long R S.A new view of nonlinear water waves-the Hilbert spectrum,Ann.Rev.Fluid Mech,1999,31:417-457.
  • 8Huang N E,Wu Z.A review on Hilbert-Huang transform:Method and its applications to geophysical studies,Adv ances in Adaptive Data Analysis 2009,1:1-23.
  • 9Gai G H.The processing of rotor startup signals based on empirical mode decomposition[J].Mechanical Systems and Signal Processing,2006,20:225-235.
  • 10Deering R,Kaiser J F.The use of masking signal to improve emprical mode decomposition[C]// IEEE International Conference on Acoustics,Speech,and Signal Processing.Philadelphia,USA,2005,Ⅳ:485-488.

共引文献1095

同被引文献10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部