期刊文献+

基于机器视觉的玉米三维表型参数提取算法 被引量:1

Extracting algorithm of maize three-dimensional phenotypic parameters algorithm base on machine vision
下载PDF
导出
摘要 针对目前玉米植株表型参数提取存在精度低、测量时间长和需要人工辅助等问题,提出了基于机器视觉的三维表型参数提取方法。采用瞬时成像设备,获取玉米植株64个角度无背景的图像;基于机器视觉获取三维点云,采用基于拉普拉斯的骨架提取算法提取玉米骨架,对叶片骨架和茎秆骨架优化后,提取叶长、叶最大宽度、叶基部高度、叶夹角、株高和植株最小包围盒体积。比较两个玉米自交系参数提取结果,取误差上限,骨架优化前后叶长、叶最大宽度和叶基部高度平均绝对百分比误差分别下降5.89%、0.04%和0.86%;与人工测量值相比,测得的叶长、叶最大宽度和叶基部高度的平均绝对百分比误差分别为6.66%、6.45%和5.43%。本研究提供了一种高精度、高通量、自动化的玉米生长动态定量化测量方法。 Aiming at the problems of low precision,long measurement time,artificial assistance in extracting maize plant phenotypic parameters,a three-dimensional phenotypic parameter extraction method based on machine vision was proposed.Instantaneous imaging equipment was used to obtain images of maize plant at 64 angles without background.Based on machine vision,the three-dimensional point cloud was obtained.The skeleton extraction algorithm based on Laplace was used to extract maize skeleton.After optimizing the leaf skeleton and stem skeleton,the leaf length,maximum leaf width,leaf base height,leaf angle,plant height and plant minimum bounding box volume were extracted.Comparing the extraction results of two maize inbred lines,taking the upper limit of error,the root mean square errors of leaf length,maximum leaf width and leaf base height decreased by 5.89%,0.04% and 0.86%,respectively before and after skeleton optimization.Compared with the manually measured values,the mean absolute percentage errors of leaf length,maximum leaf width and leaf base height were 6.66%,6.45% and 5.43%,respectively.This study provided a high precision,highthroughput,automated quantitative measurement method of maize growth dynamics.
作者 李哲 宋青峰 朱新广 胡勇 巩彩兰 卜弘毅 LI Zhe;SONG Qingfeng;ZHU Xinguang;HU Yong;GONG Cailan;BU Hongyi(Key Laboratory of Infrared System Detection and Imaging Technology,Shanghai Institute of Technical Physics,Chinese Academy of Sciences,Shanghai 200083,China;University of Chinese Academy of Science,Beijing 100049,China;CAS Center for Excellence in Molecular Plant Science,Shanghai 200031,China)
出处 《上海农业学报》 2022年第6期1-8,共8页 Acta Agriculturae Shanghai
基金 国家自然科学基金面上项目(31970378)。
关键词 机器视觉 玉米植株 多视角图像 表型参数 Machine vision Maize plants Multi-view image Phenotypic parameters
  • 相关文献

参考文献9

二级参考文献100

共引文献477

同被引文献13

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部