摘要
利用正交曲线坐标系与笛卡儿坐标系单位矢量的关系,以及笛卡儿坐标系单位矢量为常矢量的特性,从单位矢量变换的角度,推导柱坐标系和球坐标系中的梯度算子,以及单位矢量对坐标的偏导数.并根据张量的场论基础,通过微分运算,推导出位移矢量的梯度和应力张量的散度.再根据几何方程和平衡微分方程的张量表达形式,推导出柱坐标系和球坐标系中的应变几何方程和应力平衡微分方程.
First,using the relations of the unit vectors between orthogonal curvilinear coordinates and Cartesian coordinates,and the invariability of the unit vectors in Cartesian coordinates,the gradient operator in both coordinates,and the partial derivative of the unit vectors to the coordinates are derived from the perspective of the transformation of the unit vectors.Then,using the fundamentals of the theorems of tensor field,the gradient of displacement vector and the divergence of stress tensor are derived by derivation.Last,the geometric equations of strain and the differential equations of equilibrium are derived in details in cylindrical coordinates and spherical coordinates from their forms expressed by tensor.
作者
周正峰
ZHOU Zheng-feng(School of Civil Engineering,SouthwestJiaotong University,Chengdu,Sichuang 610031,China;Key Laboratory of Highway Engineering of Sichuan Province,Southwest Jiaotong University,Chengdu,Sichuang 610031,China)
出处
《大学物理》
2022年第11期4-8,共5页
College Physics
基金
国家自然科学基金(51878575)资助
西南交通大学教育教学研究与改革项目(20201002-04,20201003-05,YK20211007)资助
关键词
张量分析
几何方程
平衡微分方程
柱坐标系
球坐标系
弹性力学
tensor analysis
geometric equations
equilibrium differential equations
cylindrical coordinates
spherical coordinates
elasticity