摘要
针对研究生培养质量评估中存在的主观性强、数据类别不平衡问题,文章提出一种基于过采样与集成学习的研究生培养质量预测算法(K-means SMOTE Random_Stacking,KSRS)。首先,通过K-means SMOTE算法调整数据集样本分布,使其各类别平衡;其次,基于平衡数据集采用Random_Stacking算法构建研究生培养质量预测模型;最后,利用模型对研究生培养质量进行预测。根据真实的研究生培养数据验证所提模型的有效性。结果表明:对比其他分类算法,KSRS算法在指标召回率、F1值、精确率上均有较大提升,为研究生培养质量评估提供一种科学有效的方法参考。
To address the problems of strong subjectivity and unbalanced data categories in graduate training quality assessment,the paper proposes a graduate training quality prediction algorithm(K-means SMOTE Random_Stacking,KSRS)based on oversampling and integrated learning.Firstly,the sample distribution of the data set is adjusted by K-means SMOTE algorithm to make its categories balanced;secondly,a graduate training quality prediction model is constructed based on the balanced data set using Random_Stacking algorithm;finally,the model is used to predict the graduate training quality.The validity of the proposed model is verified based on the real postgraduate training data.The results show that,compared with other classification algorithms,the KSRS algorithm has a greater improvement in the index recall,F1 value and accuracy rate,which provides a scientific and effective method reference for graduate training quality assessment.
作者
晁荣志
武壮
陈湘国
魏忠诚
张春华
CHAO Rongzhi;WU Zhuang;CHEN Xiangguo;WEI Zhongcheng;ZHANG Chunhua(School of Information&Electrical Engineering,Hebei University of Engineering,Handan Hebei 056038,China;Hebei Key Laboratory of Security&Protection Information Sensing&Processing,Handan Hebei 056038,China;Department of Public Sports,Hebei University of Engineering,Handan Hebei 056038,China)
出处
《信息与电脑》
2022年第18期60-63,共4页
Information & Computer
基金
河北省研究生示范课程建设项目(项目编号:KCJSX2022090,KCJSX2022091)
河北省高等学校科学技术研究项目(项目编号:QN2020193,ZD2020171)
邯郸市科学技术研究与发展计划(项目编号:21422031288)
河北省省级研究生创新资助项目(项目编号:CXZZBS2022024)。