期刊文献+

太阳能聚光电池肋型结构冷却特性的数值研究

Numerical study on cooling characteristics of solar concentrating cellswith fin structure
下载PDF
导出
摘要 太阳电池可以直接将太阳能转化为电能,但工作温度过高会极大影响光电转换效率甚至损坏电池,特别是在高倍聚光条件下,保持电池温度均匀性具有重大意义。因此,在研究中,需要将直肋式换热器、针肋式换热器、三角肋式换热器与高倍聚光电池结合起来综合考虑。在电池温度均匀性方面,直肋式换热器下的电池能较好地保持温度场的均匀,并且光电转换效率均优于其他两种情况;当风速超过2 m/s,聚光比为1000时仍可以保持在最佳工作温度范围,光电转换效率超27%。 Solar cells can directly convert solar energy into electrical energy,but too high operating temperature will greatly affect the photoelectric conversion efficiency and even damage the cell.Especially under the high condensing energy,it is of great significance to maintain the temperature uniformity of the cells.Therefore,the straight fin heat exchanger,the needle fin heat exchanger,the triangular fin heat exchanger and the high concentrating cell were combined for comprehensive research.Taking into account the uniformity of the cell temperature,the cell under the straight fin heat exchanger can better maintain the uniformity of the temperature field,and the photoelectric conversion efficiency is better than the other two cases.When the wind speed exceeds 2 m/s,it can still be maintained in the optimal operating temperature range when the concentration ratio is 1000,and its electrical efficiency can be maintained above 27%.
作者 陈海飞 王韵杰 杨慧涵 邵永辉 杨洁 CHEN Haifei;WANG Yunjie;YANG Huihan;SHAO Yonghui;YANG Jie(School of Energy,School of Petroleum Engineering,Changzhou University,Changzhou Jiangsu 213016,China)
出处 《电源技术》 CAS 北大核心 2022年第12期1469-1472,共4页 Chinese Journal of Power Sources
基金 国家自然科学基金(51906020) 江苏省研究生科研与实践创新计划项目(KYCX21_2813) 江苏省大学生创新创业训练计划(2021-C-07)。
关键词 太阳电池 高倍聚光 被动冷却 温度均匀性 solar cell high power concentration passive cooling temperature uniformity
  • 相关文献

参考文献9

二级参考文献40

  • 1张凇源,关欣,王殿华,郭志波.太阳能光伏光热利用的研究进展[J].化工进展,2012,31(S1):323-327. 被引量:20
  • 2黄护林,韩东,孔令宾.光伏建材型太阳电池板自然通风冷却的研究[J].太阳能学报,2006,27(3):309-313. 被引量:26
  • 3牛润萍,由世俊,陈其针,马福多.用于供冷的闭式冷却塔换热模型与性能分析[J].沈阳建筑大学学报(自然科学版),2007,23(3):453-456. 被引量:13
  • 4Antonio M, Antonio L. Next generation photovoltaics high efficiency through full spectrum utilization [M]. Bristol and Philadelphia: Institute of Physics Publishing, 2002, 64.
  • 5Hein M, Dimroth F, Siefer G, et al. Characterisation of a 300X photovohaic concentrater system with one-axis trackin [J]. Solar Energy Material & Solar Cells, 2003, 75(1-2) : 277-283.
  • 6Andreev V M, Grilikhes V A, Khvostikov V P, et al. Concentrator PV modules and solar cells for TPV systems original research article [J]. Solar Energy Material & Solar Cells, 2004, 84(1-4) : 3-17.
  • 7Rumyantsev V D, Sadchikov N A, Chalov A E, et al. Pilot installation with "all-glass" concentrator PV modules [A]. 21th European Photovoltaic Solar Energy Conference[C], Dresden, 2006, 2097-2100.
  • 8Araki K, Uozumi H, Yamagueh M. A simple passive cooling structure and its heat analysis for 500X concentrator PV module [ A ]. 29th Institute of Electrical and Electronics Engineers Photovoltaie Specialists Conference[C], New Orleans, 2002,1568-1571.
  • 9Coventry J S. Performance of a concentrating photovohaic/thermal solae collector [J]. Solar Energy, 2005, 78(2): 211-222.
  • 10Mittelman G, Kribus A D. Solar cooling with concentrating photovohaie/thermal systems [J]. Energy Conversion and Management, 2007, 48(9):2481-2490.

共引文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部