期刊文献+

195/85R16LT轮胎行驶面弧度高对成品性能影响的有限元分析

Finite Element Analysis on Effect of Arc Height of Running Surface on Performance of 195/85R16LT Tire
下载PDF
导出
摘要 利用有限元分析软件研究195/85R16LT轮胎的行驶面弧度高(h)对成品性能的影响。结果表明:随着h减小,轮胎胎肩部位花纹块的接地压力逐渐增大、胎冠中心部位花纹块的接地压力逐渐减小,胎肩和胎圈部位的受力分布也发生变化;方案1轮胎(h=6.5 mm)的接地因数和平均接地压力最大,接地压力分布不均匀,抓着性能和操控性能较好,滚动阻力较高,耐磨性能差;方案3轮胎(h=5.5 mm)接地印痕的矩形率接近1,接地印痕形状为矩形,接地压力偏度值最小,平均接地压力也较小,耐磨性能好;方案2轮胎(h=6 mm)的2#带束层端点应变能密度、胎体帘布反包端点应变能密度和加强层反包端点应变能密度最小,耐久性能最好。 The influence of the arc height of running surface(h)on the performance of 195/85R16LT tire was studied by using finite element analysis software.The results showed that,with the decrease of h,the grounding pressure of the pattern block on the shoulder of the tire increased gradually,the grounding pressure of the pattern block on the center of the crown decreased gradually,and the force distribution on the shoulder and the bead also changed.Scheme 1 tire(h=6.5 mm)had the largest grounding factor,highest average grounding pressure,uneven grounding pressure distribution,good grip and handling performance,high rolling resistance and poor wear resistance.The rectangular ratio of scheme 3 tire footprint(h=5.5 mm)was close to 1,indicating that the footprint was rectangular,the ground contact pressure skewness was the smallest,the average ground pressure was also small,and the wear resistance was good.Scheme 2 tire(h=6 mm)had the best durability with the smallest strain energy density at the end of the 2#belt,the turn-up end of the carcass cord,and the turn-up end of the reinforcing layer.
作者 王志勇 车明明 王明伟 任世夺 WANG Zhiyong;CHE Mingming;WANG Mingwei;REN Shiduo(Prinx Chengshan(Shandong)Tire Co.,Ltd,Weihai 264300,China;Prinx Chengshan(Qingdao)Industrial Research and Design Co.,Ltd,Qingdao 266042,China)
出处 《轮胎工业》 CAS 2022年第11期655-658,共4页 Tire Industry
关键词 轮胎 行驶面弧度高 接地印痕 耐磨性能 滚动阻力 有限元分析 tire arc height of running surface footprint wear resistance rolling resistance finite element analysis
  • 相关文献

参考文献5

二级参考文献29

  • 1程钢,赵国群,管延锦.滚动轮胎耐久性有限元分析[J].弹性体,2006,16(1):20-25. 被引量:5
  • 2陈强明.轮胎滚动阻力与汽车燃油经济性的关系[J].兰州交通大学学报,2006,25(1):44-47. 被引量:4
  • 3李吉涛.罗毅.等.轮胎接地反力分布的试验研究.试验力学,2003,18(2):217-221.
  • 4Koehne S H, Mature B, Mundl R.Evaluation of tire tread and body interaction in the contact patch.Tire Science and Technology.2003,31 (3) :pp 159-172.
  • 5Dubois G, Cesbron J, et al. Numerical evaluation of tyre/ road contact pressure using a multi-asperity approach.In- ternational Journal of Mechanical Sciences.2012,54 ( 1 ) : 84-94.
  • 6Pillai P S, Fielding-Russell G S. Empirical Equations for Tire Footprint Area. Rubber Chemistry and Technology 1986,59(1 ):156-159.
  • 7Klaudia Jankowska,Tomasz krzyzynski and Andreas Domscheit. An Application for tire-Ground Area Anal- ysis. Computer Recognition Systems. 2005, V30. pp: 843- 850.
  • 8Chen Liang, Guolin wang.Study on tyre-ground mechani- cal characters of TBR tyres.International Conference on Electric Information and Control Engineering (ICEICE), 2011 ,pp:5411- 5414.
  • 9Fwa T, Anupam K, Ong G. Relative Effectiveness of Grooves in Tire and Pavement for Reducing Vehicle Hydroplaning Risk. Transportation Research Rec, ord: Journal of the Transportation Research Board,2010, 2155:73-81.
  • 10Wies B, Roeger B, Mundl R. Influence of Pattern Void on Hydroplaning and Related Target Conflicts. Tire Science and Technology ,2009, 37(3 ):187-206.

共引文献67

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部