期刊文献+

增程式混动汽车冷却系统控制策略

Control strategy of cooling system for extended-range hybrid vehicle
下载PDF
导出
摘要 为降低增程式电动汽车冷却系统的总功耗,分析水泵和风扇功率分配对冷却效果的影响,在保证冷却效果的前提下,计算不同散热量和风速下功耗最低的水泵与风扇的转速组合;在Simulink中搭建冷却系统的控制模型,优化设计冷却系统控制策略并进行仿真试验。仿真结果表明:相比传统固定转速比的冷却系统控制策略,在1次增程器开启、关闭过程中,优化后的发动机冷却系统可节能9.51%;在新标欧洲循环测试下,优化后的电机冷却系统可节能25.64%。 To reduce the total power consumption of the extended-range hybrid vehicle cooling system,the influence of the power distribution of the water pump and fan on the cooling effect is studied.Under the premise of ensuring the cooling effect,the speed of the pump and fan with the lowest power consumption under different heat dissipation and wind speed is calculated.The control model of the cooling system is built in Simulink to optimize the control strategy,and simulation analysis is carried out.The results show that the optimized engine cooling system can save energy by 9.51%compared with the traditional cooling system control strategy with a fixed speed ratio during the opening and closing process of the primary range extender;under the new European driving cycle(NEDC),the optimized motor cooling system can save energy by 25.64%.
作者 封金凤 陈晓飞 刘长振 白书战 FENG Jinfeng;CHEN Xiaofei;LIU Changzhen;BAI Shuzhan(School of Energy and Power Engineering,Shandong University,Jinan 250061,China;China North Engine Reaserch Institue,Tianjin 300400,China)
出处 《内燃机与动力装置》 2022年第6期29-36,共8页 Internal Combustion Engine & Powerplant
基金 山东省重点研发计划项目(2020CXGC010406、2019JZZY010912) 稳定支持项目(WDZC-2019-XXDL-03)。
关键词 增程式混动汽车 最小总功耗 冷却系统 控制策略 extended-range hybrid vehicle minimum power consumption cooling system control strategy
  • 相关文献

参考文献9

二级参考文献60

  • 1李晓英,于秀敏,李君,吴志新.串联混合动力汽车控制策略[J].吉林大学学报(工学版),2005,35(2):122-126. 被引量:26
  • 2古艳春,殷承良,张建武.并联混合动力汽车扭矩协调控制策略仿真研究[J].系统仿真学报,2007,19(3):631-636. 被引量:24
  • 3Phillips A M, Jankovic M, Bailey K. Vehicle system controller design for a hybrid electric vehicle[C]//Proceedings of the 2000 IEEE International Conference on Control Application, 2000.
  • 4Zhang Rongjun, Chen Yaobin. Control of hybrid dynamic systems for electric vehicles [C] //Proceedings of the 2001 American Control Conference Arlington, VA, IEEE, 2001:2 884--2 889.
  • 5Schuouten N J, Salman M A, Kheir N A. Fuzzy logic control for parallel hybrid vehicle[J]. IEEE Transactions on Control Systems Technology, 2002, 10 (3) : 460 -- 468.
  • 6Zhu Yuan, Chen Yaobin. A four-step method to design an energy management strategy for hybrid vehicles[C]//Proceedings of the 2004 American Control Conference-ACC 2004, Boston, MA, 2004.
  • 7Halvai A, Niassar H. Moghbelli A Vahedi. Design methodology of drive train for a series-parallel hybrid electric vehicle(SP- HEV)and its power control strategy[C]. IEEE International Conference on Electric Machines and Prives, 2005:1 549 1 554.
  • 8Dam Hoang Phuc, Pongsathorn Raksincharoensak, et al. Control strategy for hybrid electric vehicles based on driver vehicle following model[ C]//Proceedings of SICE-ICASE 2006 International Joint Conference, 2006 : 555 - 560.
  • 9Li Weimin, Xu Guoqing, Wang Zhangcheng, et al. A hybrid controller design for parallel hybrid electric vehicle[C]//IEEE International Conference on Integration Technology, 2007: 450--454.
  • 10Liu Jinming, Peng Huei. Modeling and control of a power-split hybrid vehicle[J]. IEEE Transactions on Control Systems Technology, 2008, 16(6) : 1 242-- 1 251.

共引文献77

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部