摘要
铁电晶体BaTiO_(3)已经被广泛应用于介电和压电元件领域中,但BaTiO_(3)存在多个相变温度,尤其是发生在室温附近的相变,会严重损害晶体质量。为了对BaTiO_(3)的性能进行改良,考虑对BaTiO_(3)晶体进行掺杂。基于第一性原理,计算了不同Ca含量掺杂BaTiO_(3)的电子结构和光学性质,即Ba_(1-x)Ca_(x)TiO_(3)(x=0,0.125,0.25,0.5)。通过研究发现,在电子结构方面,BaTiO_(3)是直接带隙半导体,其禁带宽度为1.74 eV,掺杂Ca导致BaTiO_(3)带隙增加。BaTiO_(3)掺杂Ca后的态密度比未掺杂的BaTiO_(3)大,但随着掺杂含量的增加,态密度不断减小。在光学性质方面,BaTiO_(3)掺杂Ca后,导致介电峰发生明显偏移。BaTiO_(3)掺杂Ca后,其静态介电常数变小。不同Ca含量掺杂BaTiO_(3)后对不同波长的光吸收有所不同,当Ca含量为0.125时,对光的吸收能力下降程度较大。本文对Ba_(1-x)Ca_(x)TiO_(3)(x=0,0.125,0.25,0.5)的研究结果表明其在光电领域具有广泛的应用前景,同时对该系列晶体的生长及性能研究提供一定的理论基础。
BaTiO_(3)crystals have been widely used in the field of dielectric and piezoelectric components,but BaTiO_(3)has multiple phase transition temperatures,especially at room temperature,which will seriously damage the crystal quality.In order to improve the properties of BaTiO_(3),doping BaTiO_(3)crystals is considered.In this paper,based on first-principle calculation,the electronic structure and optical properties of BaTiO_(3)doped with different Ca contents,namely Ba_(1-x)Ca_(x)TiO_(3)(x=0,0.125,0.25,0.5),were calculated.It is found that BaTiO_(3)is a direct band gap semiconductor in terms of electronic structure,and its band gap width is 1.74 eV.Doping Ca leads to an increase in the band gap of BaTiO_(3).The density of states of BaTiO_(3)doped with Ca is larger than that of undoped BaTiO_(3),but the density of states decreases with the increase of doping content.In terms of optical properties,BaTiO_(3)doping with Ca results in a significant shift in the dielectric peak.After BaTiO_(3)is doped with Ca,its static dielectric constant becomes smaller.The light absorption of different wavelengths is different after BaTiO_(3)is doped with different Ca contents.When Ca is 0.125,the light absorption capacity decreases greatly.The research results of Ba_(1-x)Ca_(x)TiO_(3)(x=0,0.125,0.25,0.5)crystals in this paper show a broad application prospects in the field of optoelectronics and provide a theoretical basis for the growth and properties of this series of crystals as well.
作者
季彬
赫崇君
李自强
邓晨光
李千
JI Bin;HE Chongjun;LI Ziqiang;DENG Chenguang;LI Qian(Space Photoelectric Detection and Perception Laboratory,Key Laboratory of Ministry of Industry and Information Technology,School of Aeronautics andAstronautics,Nanjing University of Aeronautics and Astronautics,Nanjing 211106,China;Jiangsu Aidi Electromechanical Equipment Industry Co.,Ltd.,Nanjing 211101,China;State Key Laboratory of New Ceramics and Fine Processing,School of Materials Science and Engineering,Tsinghua University,Beijing 100084,China)
出处
《功能材料》
CAS
CSCD
北大核心
2022年第12期12021-12027,共7页
Journal of Functional Materials
基金
国家自然科学基金(61675095,61875086,61377086)
新型陶瓷与精细工艺国家重点实验室资助(KF202205)
南京航空航天大学空间光电探测与感知工业和信息化部重点实验室开放课题资助(NJ2022025-4)
中央高校基本科研业务费资助(NJ2022025,56XBC22047)。