期刊文献+

小波包和改进粒子群算法的电力电子故障诊断

Power electronic circuit fault diagnosis based on wavelet packet and improved particle swarm optimization
下载PDF
导出
摘要 为提高广泛应用的电力电子电路故障的诊断准确率与速度,提出一种基于小波包变换和改进粒子群算法的电力电子电路故障诊断方法。首先,利用小波包对故障信号进行分解与重构得到小波包系数,应用Fisher准则降维并进行归一化处理,得到优化的故障特征向量;然后,采用具有扭曲粒子位置的措施和增加动态惯性权重系数的改进粒子群算法求取各类故障的故障特征中心,通过计算测试样本与故障特征中心的欧氏距离实现对故障的分类诊断;最后,通过典型电力电子电路仿真实验对所提出的方法进行实验验证。实验结果表明,文中选用改进后的粒子群算法进行故障诊断时,与小波包-BP神经网络和小波包-极限学习机比较,准确率分别提高了3.52%和6.3%,诊断所需时间分别减少2.4 s和3.5 s。 In order to improved the accuracy and speed of fault diagnosis of power electronic circuits,a fault diagnostic approach based on wavelet packet transform and improved particle swarm optimization is proposed.The wavelet packet is utilized to obtain the wavelet packet coefficients by decomposition and reconstruction of fault signals,and then the optimized fault feature vectors are created by using the Fisher′s criterion for dimensionality reduction and normalization processing.An improved particle swarm optimization method possessing the distorted particle position measures and enhancing the dynamic inertial weight coefficients is employed to calculate the fault feature center of each type of fault,and then Euclidean distance between test sample and fault feature center is calculated to realize the fault classification.Finally,a typical power electronic circuit simulation experiment is used to validate the proposed method.The experimental results show that,compared with the wavelet packet-BP neural network and the wavelet packet-extreme learning machine,the accuracy of the improved particle swarm optimization algorithm for fault diagnosis is increased by 3.52%and 6.3%,the time required for diagnosis is reduced by 2.4 s and 3.5 s,respectively.
作者 吴志勇 司剑飞 王贞 张汉霖 WU Zhiyong;SI Jianfei;WANG Zhen;ZHANG Hanlin(College of Electrical Engineering,Qingdao University,Qingdao 266071,China;Qingdao Campus of Naval Aeronautical University,Qingdao 266041,China)
出处 《现代电子技术》 2023年第1期131-136,共6页 Modern Electronics Technique
基金 山东省自然科学基金项目(ZR201911140024)。
关键词 电力电子电路 故障诊断 小波包变换 粒子群算法 特征提取 故障分类 实验验证 power electronic circuit fault diagnosis wavelet packet transform particle swarm optimization feature extraction fault classification experimental verification
  • 相关文献

参考文献13

二级参考文献156

共引文献178

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部