摘要
一元线性回归分析主要研究两个变量之间的线性相关关系,是根据自变量x和因变量y的相关关系建立x与y的线性回归方程进行预测的方法。本文基于大型朝鲜语口语和书面语语料库,利用一元线性回归分析方法,计算各类实词之间的相关系数,并对其进行排序,再对中度以上的相关关系建立一元线性回归方程,并以此对朝鲜语口语和书面语进行比较研究。
Univariate linear regression is commonly employed to study the linear relationship between two variables,the independent variable x and the dependent variable y.It is an approach for prediction by way of establishing the linear regression equation of x and y according to their correlation.Based on large-scale spoken and written Korean corpora,this paper uses a univariate linear regression model to calculate the correlation coefficients between each of the four categories of content words and the other twelve categories,sorts the correlation coefficients,and then establishes a univariate linear regression model of the correlation above the moderate,which is used to compare spoken and written Korean.
作者
卢星华
金静
LU Xinghua;JIN Jing
出处
《民族语文》
CSSCI
北大核心
2022年第5期79-91,共13页
Minority Languages of China
基金
国家社科基金一般项目“面向智能信息处理的韩国语口语词汇研究(16BYY176)”的阶段性成果。
关键词
朝鲜语
口语
书面语
一元线性回归
相关性分析
Korean language
spoken language
written language
univariate linear
regression correlation
analysis