期刊文献+

逼近离散序列的多项式拟合模型的方法分析研究

Analysis and Research on the Method of Polynomial Fitting Model for Approximating Discrete Sequences
下载PDF
导出
摘要 为剖析一般多项式最小二乘法与正交多项式最小二乘法在离散数据拟合模型的差异,利用Matlab对某种食品每件平均单价y与批量x的离散数据建立多项式拟合模型.以拟合误差结果平方和为指标,比较不同拟合次数下一般多项式最小二乘法模型与正交多项式最小二乘法模型的拟合差异.结果表明,随着拟合次数的增加拟合结果的误差更低,拟合结果更精确.当拟合次数相同时,正交多项式最小二乘法比多项式最小二乘法具有更低的误差平方和,获得效果更好的拟合结果. In order to analyze the difference between the general polynomial least squares method and the orthogonal polynomial least squares method in the discrete data fitting model, a polynomial fitting model was established for the discrete data of the average unit pricey and batch x of a certain food by using Matlab.Taking the square sum of fitting error results as the index, the fitting differences between the general polynomial least squares model and the orthogonal polynomial least squares model under different fitting degrees were compared.The results show that the error of fitting results was lower and the fitting results were more accurate with the increase of fitting times.When the fitting degree was the same, the orthogonal polynomial least squares method has lower error square sum than the polynomial least squares method, and better fitting results were obtained.
作者 杨鑫 蔺琳 YANG Xin;LIN Lin(Dalian University of Finance and Economics,Dalian 116000,China)
机构地区 大连财经学院
出处 《太原师范学院学报(自然科学版)》 2022年第4期11-15,共5页 Journal of Taiyuan Normal University:Natural Science Edition
关键词 曲线拟合 最小二乘法 拟合方程 误差 curve fitting Least square method Fitting equation error
  • 相关文献

参考文献4

二级参考文献41

  • 1李远禄,于盛林.非整数阶系统的频域辨识法[J].自动化学报,2007,33(8):882-884. 被引量:15
  • 2Ghanbari M, Haeri M. Order and pole locator estimation in fractional order systems using bode diagram. Signal Pro- cessing, 2011, 91(2): 191-202.
  • 3Ozdemir N, Iskender B B. Fractional order control of frac- tional diffusion systems subject to input hysteresis. Journal of Computational and Nonlinear Dynamics, 2010, 5(2): 1-5.
  • 4Vinagre B M, Podlubny I, Hernandez A, Feliu V. Some ap- proximations of fractional order operators used in control theory and applications. Fractional Calculus and Applied Analysis, 2000, 3(3): 231-248.
  • 5Shaher M, Omar K J, Rabha I. Numerical approximations of a dynamic system containing fractional derivatives. Journal of Applied Sciences, 2008, 8(6): 1079-1084.
  • 6Muslim M, Conca C, Nandakumaran A K. Approximation of solutions to fractional integral equation. Computers and Mathematics with Applications, 2010, 59(3): 1236-1244.
  • 7Hamdaoui K, Charef A. A new discretization method for fractional order differentiators via the bilineax transforma- tion. In: Proceedings of the 15th International Confer- ence on Digital Signal Processing. Cardiff, UK: IEEE, 2007. 280-283.
  • 8Tricaud C, Chen Y Q. An approximate method for numer- ically solving fractional order optimal control problems of general form. Computers and Mathematics with Applica- tions, 2010, 59(5): 1644-1655.
  • 9Tavakoli-Kakhki M, Haeri M. Model reduction in commen- surate fractional-order linear systems. Proceedings of the Institution of Mechanical Engineers Part I: Journal of Sys- tems and Control Engineering, 2009, 223(4): 493-505.
  • 10Madrid A P D, Manoso C, Hernandez R. New direct dis- cretization of the fractional-order differentiator/integrator by the Chebyshev-Pade approximation. In: Proceedings of the 2nd IFAC Workshop on Fractional Differentiation and Its Applications. Porto, Portugal: Curran Associates, 2006. 166 - 170.

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部