期刊文献+

基于TransUnet的侵彻多层过载信号生成 被引量:3

Penetration Multilayer Overload Signal Generation Based on TransUnet
下载PDF
导出
摘要 随着现代电子技术的蓬勃发展,人工智能在军事领域呈现快速上升的鳌头趋势,同时也面临着数据量严重不足的困境,针对目前侵彻多层过载信号数量少、类别不平衡等问题,结合深度学习的InfoGAN模型,提出一种基于TransUnet的侵彻多层过载信号生成方法。首先,以靶场实测过载信号作为训练模型的数据集,根据侵彻层数建立标签信息;其次,构建生成器与判别器,生成器借鉴TransUnet的思想,由Transformer Encoder和U-Net组成,用于学习过载数据集的特征映射,判别器则使用较为简单的注意力模型,以降低整体模型的复杂度;最后,利用生成对抗网络对生成器与判别器进行训练与优化,实现侵彻多层过载数据生成。实验结果表明,该方法能够根据不同层数信息生成不同速度的有效过载数据,可在一定程度上解决侵彻多层过载信号缺乏的问题。 With the booming development of modern electronic technology,artificial intelligence in the military field shows a hasty rising trend,but also faces the dilemma of a serious lack of data volume.To address the current problems of low number and unbalanced categories of penetration multilayer overload signals,we propose a TransUnet-based penetration multilayer overload signal generation method combined with the fruitful InfoGAN model of deep learning.Firstly,real overload signals at the range are used as the dataset of the training model,and the label information is established according to the number of penetration layers.Secondly,the generator and discriminator are constructed.The generator borrows the model structure of TransUnet,which consists of a Transformer Encoder and U-Net for learning the feature mapping of the overload dataset.At the same time,the discriminator applies a simpler attention model to reduce the overall model complexity.Finally,generators and discriminators are trained and optimized by using the generative adversarial network to generate multilayer penetration overload data.Experimental results show that the method can effectively overload data with different speeds according to the information of different layers.The problem of lack of penetration multilayer overload signals can be solved to a certain extent.
作者 李蓉 房安琪 LI Rong;FANG Anqi(Xi’an Institute of Electromechanical Information Technology,Xi’an 710065,China)
出处 《测试技术学报》 2023年第1期43-53,共11页 Journal of Test and Measurement Technology
关键词 信号生成 Transformer模型 U-Net InfoGAN 生成对抗式网络 signal generation Transformer mode U-Net InfoGAN generative adversarial network
  • 相关文献

参考文献12

二级参考文献60

  • 1朱松俭,涂诗美,苏伟,商顺昌.一种测定复杂介质的实时算法[J].探测与控制学报,2004,26(2):28-31. 被引量:7
  • 2李蓉,康兴国.一种实时计算硬目标侵彻着速的方法[J].探测与控制学报,2004,26(2):32-35. 被引量:20
  • 3柴华友,贺怀建.阻尼对应力波传播的影响[J].岩土力学,1994,15(1):42-49. 被引量:6
  • 4李蓉,康兴国.打击深层硬目标的引信计行程起爆控制技术[J].探测与控制学报,2006,28(6):33-36. 被引量:16
  • 5[1] Haldlar A,Hamieh H A. Local Effects of Solid Missiles on Concrete Structrurs[J]. Journal of the Structural Engineering Division.ASCE,1984,110(5):146-147.
  • 6[2] Young C W, Young E R.Simplified Analytical Model of Penetration with Lateral Loading[R].Albuquerque,NM:Sandia National Laboratories. SAND84-1635, 1988.
  • 7Max Perrin.Future fuzing,new operational needs and fuze technical challenges[C]//53rd Annual Fuze Conference.US:NDIA,2009:19-21.
  • 8Max Perrin.Hard target fuzing solutions[C]//52nd Annual Fuze Conference.US:NDIA,2008:13-15.
  • 9Craig Bouncher.Electronic safe ann deveice[P].United States Patent,5476044,1995.
  • 10Richard Johnson.The army fuze safety review board process & spider[C]//Mines,Demolitions and Non-Lethal Weapons Conference.New Orleans:LA,2003:9-11.

共引文献353

同被引文献73

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部