期刊文献+

移动医疗App在线评论维度挖掘与情感分析 被引量:4

Dimension mining and sentiment analysis of online reviews of mobile medical App
下载PDF
导出
摘要 目的:对我国移动医疗App的在线评论进行维度挖掘与情感分析,以便精准评价用户满意度。方法:基于App Store中国应用市场中医疗类App的在线评论数据,采用集成多策略的深度学习方法,首先应用TF-IDF算法、BERT模型和Canopy+K-means聚类分析方法提取移动医疗App在线评论的主要维度,然后通过计算各维度权重值,明确不同维度对用户整体评价意见的重要性,最后利用LSTM-CNN模型对各维度的用户评论进行细粒度情感分析。结果:用户关注的移动医疗App在线评论主要维度依次为专业性、可靠性、交互性、易用性和特色性;用户对移动医疗App的整体满意度不高,在可靠性、交互性、特色性维度上的评论积极情感倾向率较低;同时,移动医疗各细分领域的App在不同维度上也存在明显不同的优势和劣势,需要根据自身特色和发展目标进行优化与完善。结论:集成多策略的深度学习方法在移动医疗App在线评论维度挖掘和情感分类上具有很好的适用性、稳定性与可推广性,可为App在线评论文本分析和用户满意度评价提供重要的方法支撑。 Objective Dimension mining and sentiment analysis of online reviews of mobile medical Apps in China were conducted,so as to accurately evaluate user satisfaction.Methods Based on the online review data of medical Apps in the App Store China App Market,the deep learning method of integrated multi-strategy was adopted,and the TF-IDF algorithm,BERT model and Canopy+K-means clustering analysis method were first used to extract the main dimensions of online reviews of mobile medical Apps,and then the importance of different dimensions to the overall evaluation opinions of users is clarified by calculating the weight values of each dimension.Finally,the LSTM-CNN model was used to perform fine-grained sentiment analysis on user comments in each dimension.Results The main dimensions of mobile medical Apps that users pay attention to are:professionalism,reliability,interactivity,ease of use and characteristics.Users’overall satisfaction with mobile medical Apps is not high,and there are few positive comments in terms of reliability,interactivity,and features.There are also obvious different advantages and disadvantages in different dimensions of Apps in various sub-fields of mobile medical care,which need to be optimized and improved according to their own characteristics and development goals.Conclusion The integrated multi-strategy deep learning method has good applicability,stability and generalizability in the dimension mining and sentiment classification of mobile medical App online reviews,and can provide important method support for the text analysis of App online reviews and user satisfaction evaluation.
作者 柯洁 杨婉 黄桂玲 王璇 刘倩 KE Jie;YANG Wan;HUANG Gui-ling;WANG Xuan;LIU Qian(Department of Neurological Rehabilitation,Zhongnan Hospital of Wuhan University,Wuhan 430071,Hubei Province,China;Department of Nursing,Zhongnan Hospital of Wuhan University,Wuhan 430071,Hubei Province,China;Department of Spine and Bone Oncology,Zhongnan Hospital of Wuhan University,Wuhan 430071,Hubei Province,China)
出处 《中华医学图书情报杂志》 CAS 2022年第6期20-29,共10页 Chinese Journal of Medical Library and Information Science
基金 武汉大学中南医院护理学学科培育项目“基于信息化平台的骨科患者出院准备服务系统的构建及实践”(2NXKPY2022009)。
关键词 移动医疗App 深度学习 在线评论挖掘 情感分析 Mobile medical App Deep learning Online comment mining Sentiment analysis
  • 相关文献

参考文献9

二级参考文献75

  • 1刘辉,江千军,桂前进,张祺,王梓豫,王磊,王京景.实体关系抽取技术研究进展综述[J].计算机应用研究,2020,37(S02):1-5. 被引量:25
  • 2.[EB/OL].http://www.lub.lu.se/tk/demos/class—ws/weighting.htm,2001—05.
  • 3Baxendale, P. E. Machine-made index for technical literature an experiment. IBM. Journal of Research and Development, 1958, 2 (4) :354 ~ 361.
  • 4Vasileios Hatzivassiloglou, Kathleen R. McKeown. Predicting the semantic orientation of adjectives[A]. In: Proceedings of the 35th Annual Meeting of the Association for Computational Linguistics and the 8th Conference of the European Chapter of the ACL[C], 1997:174- 181.
  • 5Turney, Peter, Littman Michael. Measuring praise and criticism: Inference of semantic orientation from association[J]. ACM Transactions on Information Systems, 2003, 21(4): 315- 346.
  • 6Turney ,Peter. Thumbs Up or Thumbs Down? Semantic Orientation Applied to Unsupervised Classification of Reviews[A]. In: Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics[C]. 2002:417 -424.
  • 7Bo Pang,Lillian Lee, Shivanathan Vaithyanathan. Thumbs up? Sentiment classification using machine learning techniques[A]. In Proceedings of the 2002 Conference on Empirical Methods in Natural Language Processing[C]. 2002:79 - 86.
  • 8Bo Pang,Lillian Lee. Seeing Stars: Exploiting Class Relationships for Sentiment Categorizalion with respect to Rating Seales[A]. ACL2005, 115-124.
  • 9K Dave, S lawrence, DM Pennock. , Mining the peanut gallery: opinion extraction and semantic classification of product reviews[A]. WWW2003, 519-28.
  • 10Bing Liu, Minqing Hu, Junsheng Cheng. Opinion observer: analyzing and comparing opinions on the Web[A].WWW2005, 324- 351.

共引文献597

同被引文献24

引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部