摘要
Electromagnetic stirring(EMS)is a well-known and widely used technology for controlling the fluid flow in continuous casting mold,and therein the selection of stirrer position is closely related to final product.To investigate the effect of stirrer position on initial solidification and inclusion capturing,a mathematical model coupling with electromagnetic field,turbulence flow,solidification,and inclusion movement was constructed.Through comparing the magnetic flux density,flow field and solidified shell thickness with measured data,the reliability of the mathematical model was proved.The uniform index has been introduced to judge the uniformity of solidified shell,and the washing effects of EMS on the numbers and distribution of captured inclusions were discussed.The results show that a diagonal jet flow toward the mold wide face has generated when EMS is applied,and upper EMS position can effectively improve the uniformity of temperature and the solidified shell within the mold.Meanwhile,due to the washing effect of EMS,the number of inclusions inside the solidified shell decreases,and the distribution of captured inclusions along the mold width changes evenly.Decreasing the stirrer position,the uniform index decreases firstly and then increases,and the probability of inclusion capture by solidified shell increases.Thus,the upper stirrer position is suggested,with which the uniformity of solidified shell and cleanliness of slab are rational.
基金
financially supported by the National Natural Science Foundation of China(Nos.U1860107 and 62074181).