期刊文献+

基于SSA-LERNN的光伏出力超短期预测研究 被引量:1

Ultra-short-term Photovoltaic Power Prediction Method Based on SSA-LERNN
下载PDF
导出
摘要 针对光伏发电功率模型预测准确度依赖数据质量的问题,提出一种结合奇异谱分析和局域情绪重构神经网络的超短期光伏发电功率组合预测方法。首先,利用奇异谱分析对实测光伏发电功率进行降噪处理,从复杂干扰信号中提取出平稳性好、可预测性强的有用信号。为解决奇异谱分析中参数选择主观性强、方法不系统的问题,采用基于搜索机制优化奇异谱分析参数的选取方法,以进一步提升降噪效果;然后,利用改进C-C法对降噪后的光伏发电功率时间序列进行混沌相空间重构,以深度挖掘数据隐含波动信息;最后,建立局域情绪重构神经网络预测模型捕捉相空间轨迹规律,超短期预测光伏出力。仿真结果表明,与局域情绪重构神经网络预测法以及边缘型人工情绪神经网络预测法相比,所提预测方法的预测准确性更高。 Aiming at the problem that the prediction accuracy of photovoltaic power model is depended on the quality of data, an ultra-short-term prediction method of the photovoltaic(PV) power based on SSA-LERNN is proposed. Firstly, the singular spectrum analysis(SSA) is used to reduce the noise of the measured PV power to extract useful signals with good stability and predictability from complex interference signals. Aiming at the shortcomings that the parameters selection in the SSA is too subjective and the method is not systematic, the selection of SSA parameters is optimized based on the search mechanism to further improve the effect of noise reduction. Secondly, the improved C-C method is used to reconstruct the chaotic phase space of the denoised PV power time series to deeply mine the implied fluctuated information. Finally, a prediction model based on the localized emotion reconstruction neural network(LERNN) is established to capture the law of phase space trajectory and perform ultra-short-term prediction. The simulation results show that the proposed prediction method has higher prediction accuracy than the LERNN prediction method and the limbic-based artificial emotional neural network(LiAENN) prediction method.
作者 王育飞 倪安安 朱里 杨启星 WANG Yu-fei;NI An-an;ZHU Li;YANG Qi-xing(College of Electrical Engineering,Shanghai University of Electric Power,Shanghai 200090,China;State Grid Qingpu Power Supply Company,Shanghai 201799,China;State Grid Huzhou Power Supply Company,Huzhou 313000,China)
出处 《控制工程》 CSCD 北大核心 2022年第11期1941-1947,共7页 Control Engineering of China
基金 上海市科技创新行动计划(19DZ2204700)。
关键词 光伏发电功率预测 奇异谱分析 混沌 相空间重构 局域情绪重构神经网络 Photovoltaic power prediction singular spectrum analysis chaos phase space reconstruction localized emotion reconstruction neural network
  • 相关文献

参考文献9

二级参考文献132

  • 1董雷,周文萍,张沛,刘广一,李伟迪.基于动态贝叶斯网络的光伏发电短期概率预测[J].中国电机工程学报,2013,33(S1):38-45. 被引量:77
  • 2谷子,唐巍.电力短期负荷时间序列混沌相空间重构参数优选法[J].中国电机工程学报,2006,26(14):18-23. 被引量:22
  • 3European Photovoltaic Industry Association. Global market outlook for photovoltaics 2014, 2018[R]. EPIA Report, 2014.
  • 4PVPS lEA. 2014 snapshot of global PV markets[R]. Report lEA PVPS T1-26, 2015.
  • 52014年光伏产业发展情况[EB/OL].[2015-02-15].http://www.nea.gov.cn/201502/15/c_133997454.htm.
  • 6GLASSLEY W, KLEISSL J, SHIU H, et al. Current state of the art in solar forecasting, final report: Appendix A California renewable energy forecasting, resource data and mapping[R]. California Institute for Energy and Environment, 2010.
  • 7PELLAND S, REMUND J, KLEISSL J, et al. Photovoltaic and solar forecasting: state of the art[R], lEA PVPS Task, 2013.
  • 8LONG H, ZHANG Z, SU Y. Analysis of daily solar power prediction with data-driven approaches [ J ]. Applied Energy, 2014, 126:29-37.
  • 9MARQUEZ R, COIMBRA C F M. Forecasting of global and direct solar irradiance using stochastic learning methods, ground experiments and the NWS database [ J ]. Solar Energy, 2011, 85(5) : 746-756.
  • 10ALMONACID F, PEREZ-HIGUERAS P J, FERNANDEZ E F, et al. A methodology based on dynamic artificial neural network for short-term forecasting of the power output of a PV generator[J]. Energy Conversion and Management, 2014 (85) : 389-398.

共引文献402

同被引文献12

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部