期刊文献+

不完备数据的鲁棒多视角图学习及其聚类应用 被引量:1

Robust multiview graph learning with applications to clustering for incomplete data
原文传递
导出
摘要 现有多视角图学习方法主要建立在数据具有较好完备性的前提假设下,没有充分地考虑由于特征缺失引起的不完备数据的学习问题.针对此问题,提出一种不完备数据的多视角图学习方法.一方面,从局部视角内将数据重建和图学习放入同一框架,通过不完备数据补偿,实现从重建数据中学习视角专属的近邻关系,弥补特征缺失对数据分布的影响.另一方面,为了保持近邻图的二维结构,引入张量分析,从全局角度构造基于多视角的融合图学习约束,捕获缺失数据下视角间图结构的高阶潜在关联性.框架交替的优化数据重建、视角专属图学习和融合张量图结构学习,使其在迭代中相互促进,有效提高模型对不完备多视角数据的学习能力.将所提出的方法应用于两类不完备数据的多视角聚类实验,其结果表明所提出方法在多项性能指标和鲁棒性方面均优于当前主流的多视角聚类方法. The existing multiview graph learning methods are mainly based on the premise that the data has good completeness, and do not fully consider the learning problem of incomplete data due to lack of features. Facing this problem, this paper proposes a multiview graph learning method of incomplete data. On one hand, data reconstruction and graph learning are put into the same framework from a local perspective. The view-specific neighbor relations can be learned from reconstruction data by incomplete data compensation, remedying the influence on data distribution due to feature missing. On the other hand, in order to maintain the two-dimensional structure of the nearest neighbor graph,tensor analysis is introduced to construct the fusion graph learning constraints based on multiple perspectives from a global perspective, and the capture the high-order potential relevance of graph structure between perspectives under missing data. This framework alternately optimizes data reconstruction, perspective specific graph learning and fusion tensor graph structure learning, so as to promote each other in iteration and effectively improve the learning ability of the model for incomplete multi perspective data. The proposed graph learning method is applied to two kinds of incomplete data spectral clustering experiments. The experimental results demonstrate that the proposed method outperforms the existing mainstream multiview clustering methods on both of evaluations and robustness.
作者 李骜 陈嘉佳 于晓洋 陈德运 张英涛 孙广路 LI Ao;CHEN Jia-jia;YU Xiao-yang;CHEN De-yun;ZHANG Ying-tao;SUN Guang-lu(School of Computer Science and Technology,Harbin University of Science and Technology,Harbin 150080,China;Postdoctoral Station of School of Measurement and Communication Engineering,Harbin University of Science and Technology,Harbin 150080,China;School of Computer Science and Technology,Harbin Institute of Technology,Harbin 150001,China)
出处 《控制与决策》 EI CSCD 北大核心 2022年第12期3251-3258,共8页 Control and Decision
基金 国家自然科学基金项目(62071157) 黑龙江省青年创新人才计划项目(UNPYSCT-2018203) 黑龙江省自然科学基金优秀青年基金项目(YQ2019F011) 黑龙江省高等学校基本科研业务专项基金项目(LGYC2018JQ013) 哈尔滨市应用技术研究与开发项目(2017RALX006)。
关键词 谱聚类 多视角学习 相似性图学习 低秩表示 张量分析 不完备数据 spectral clustering multi-view learning similarity graph learning low-rank representation tensor analysis incomplete data
  • 相关文献

参考文献3

二级参考文献8

共引文献65

同被引文献10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部