期刊文献+

Improving entity linking with two adaptive features

原文传递
导出
摘要 Entity linking(EL)is a fundamental task in natural language processing.Based on neural networks,existing systems pay more attention to the construction of the global model,but ignore latent semantic information in the local model and the acquisition of effective entity type information.In this paper,we propose two adaptive features,in which the first adaptive feature enables the local and global models to capture latent information,and the second adaptive feature describes effective information for entity type embeddings.These adaptive features can work together naturally to handle some uncertain entity type information for EL.Experimental results demonstrate that our EL system achieves the best performance on the AIDA-B and MSNBC datasets,and the best average performance on out-domain datasets.These results indicate that the proposed adaptive features,which are based on their own diverse contexts,can capture information that is conducive for EL.
出处 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2022年第11期1620-1630,共11页 信息与电子工程前沿(英文版)
基金 Project supported by the Key-Area Research and Development Program of Guangdong Province,China(No.2019B010153002) the Program of Marine Economy Development(Six Marine Industries)Special Foundation of Department of Natural Resources of Guangdong Province,China(No.GDNRC[2020]056) the National Natural Science Foundation of China(No.62002071) the Top Youth Talent Project of Zhujiang Talent Program,China(No.2019QN01X516) the Guangdong Provincial Key Laboratory of Cyber-Physical System,China(No.2020B1212060069)。
  • 相关文献

参考文献2

二级参考文献4

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部