期刊文献+

面向高通量的多通道复用数字全息成像技术 被引量:2

Multi-channel multiplexing digital holographic imaging for high throughput
下载PDF
导出
摘要 光学成像已成为跨尺度表征生物系统信息的主要方法之一,近年来生物样本的快速、无损且全面表征对成像系统的可解析量提出了更高的要求。数字全息通过干涉成像方式,可准确重构光波前的振幅和相位信息,具有快速、无损、三维成像等优势,在数字病理诊断、细胞无标记观察和实时监测等方面得到了广泛的研究和应用。本文首先介绍了实现高通量成像的主要方式,并分析了数字全息的优势及空间带宽变化,展示了基于希尔伯特变换的面向高通量多通道复用数字全息技术的理论框架,并介绍了基于该理论框架设计的拓展视场双通道复用数字全息显微成像系统。该系统在不牺牲空间和时间分辨率的情况下,可实现超越传统离轴全息显微镜8倍的空间带宽积。所介绍的数字全息复用技术可充分利用单幅强度图像的冗余空间带宽,可用于高通量多通道复用数字全息成像。 Optical imaging has become the dominant method for characterizing information in biological systems. The rapid, non-destructive and comprehensive characterization of biological samples in recent years has placed high demands on the resolvable volume of imaging systems. Digital holography records an entire complex wavefront including both the amplitude and phase of the light field by interference imaging.Due to fast, non-destructive, and 3D imaging abilities, digital holography has been used in numerous applications such as digital pathology, label-free observation and real-time monitoring of in vitro cells. First, this paper introduces the main ways to achieve high-throughput imaging, and analyzes the advantages of digital holography and the evolution of spatial bandwidth. Secondly, a theoretical framework for high-throughput multi-channel multiplexing digital holography based on the Hilbert transform is presented. Then, an extended field of view digital holographic microscope is introduced based on this theoretical framework. Experimental results indicate that the system achieves 8 times the space-bandwidth product higher than that of conventional off-axis holographic microscopes without sacrificing spatial and temporal resolution. This highthroughput digital holographic multiplexing technology can make full use of the redundant spatial bandwidth of single intensity image, which verifies the feasibility of high-throughput multi-channel multiplexing digital holography.
作者 黄郑重 曹良才 HUANG Zheng-zhong;CAO Liang-cai(State Key Laboratory of Precision Measurement Technology and Instruments,Department of Precision Instruments,Tsinghua University,Beijing 100084,China)
出处 《中国光学(中英文)》 EI CAS CSCD 北大核心 2022年第6期1182-1193,共12页 Chinese Optics
基金 国家自然科学基金(No.82170677)。
关键词 数字全息 多通道复用 高通量 希尔伯特变换 空间带宽积 digital holography multi-channel multiplexing high-throughput Hilbert transform space-bandwidth product
  • 相关文献

参考文献9

二级参考文献108

  • 1范琦,赵建林,向强,徐莹,陆红强,李继锋.改善数字全息显微术分辨率的几种方法[J].光电子.激光,2005,16(2):226-230. 被引量:28
  • 2张静娟,史祎诗,司徒国海.光学信息隐藏综述[J].中国科学院研究生院学报,2006,23(3):289-296. 被引量:13
  • 3L J Kricka, P Fortina. Analytical ancestry: “firsts” in fluorescent labeling of nucleosides, nucleotides, and nucleic acids[J]. Clinical Chemistry, 2009, 55(4): 670-683.
  • 4C G Rylander, D P Davé, T Akkin, et al.. Quantitative phase-contrast imaging of cells with phase-sensitive optical coherence microscopy[J]. Opt Lett, 2004, 29(13): 1509-1511.
  • 5S Yoshida, S Tanaka, M Hirata, et al.. Optical biopsy of GI lesions by reflectance-type laser-scanning confocal microscopy[J]. Gastrointestinal Endoscopy, 2007, 66(1): 144-149.
  • 6T Ikeda, G Popescu, R R Dasari, et al.. Hilbert phase microscopy for investigating fast dynamics in transparent systems[J]. Opt Lett, 2005, 30(10): 1165-1168.
  • 7N Lue, W Choi, G Popescu, et al.. Quantitative phase imaging of live cells using fast Fourier phase microscopy[J]. Appl Opt, 2007, 46(10): 1836-1842.
  • 8P J Rodrigo, D Palima, J Glückstad. Accurate quantitative phase imaging using generalized phase contrast[J]. Opt Express, 2008, 16(4): 2740-2751.
  • 9G Popescu, T Ikeda, R R Dasari, et al.. Diffraction phase microscopy for quantifying cell structure and dynamics[J]. Opt Lett, 2009, 31(6): 775-777.
  • 10R Liu, D K Dey, D Boss, et al.. Recognition and classification of red blood cells using digital holographic microscopy and data clustering with discriminant analysis[J]. J Opt Soc Am A, 2011, 28(6): 1204-1210.

共引文献107

同被引文献8

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部