期刊文献+

基于轻量级网络的铁路感兴趣区域异物侵限检测 被引量:2

Detection of foreign object intrusion in railway region of interest based on lightweight network
原文传递
导出
摘要 针对当前基于计算机视觉的铁路异物侵限算法存在错误预警、检测效率低、无法满足轻量级部署等问题,提出了一种基于轻量级网络的铁路感兴趣区域异物侵限检测方法。首先,采用透视变换和三次函数拟合的方法检测铁轨线,通过找到铁轨所在区域,扩展划分出危险区域和安全区域,得到铁路异物侵限检测的感兴趣区域。然后,利用稀疏化和通道剪枝方法对YOLOv3模型进行压缩,构建了轻量级铁路异物检测模型。最后,通过铁路数据集及现场实验进行测试表明,本文方法具有较高的检测精度和检测速度,本文轻量级模型参数空间减小为原有的1/5,检测速度是Faster R-CNN模型的3.4倍,YOLOv3模型的1.3倍,能够快速有效地检测出不同铁路场景危险区域的异物侵限,减少了错误预警。 For the problems of false warning,low detection efficiency and insatiable lightweight deployment of railway foreign object intrusion algorithms based on computer vision,a method of detection foreign object intrusion in railway region of interest based on lightweight network is proposed..Firstly,the railway track line is detected by perspective transformation and cubic function fitting.By finding the area where the rail is located,and then expanding the division of dangerous area and safe area,the region of interest of railway foreign object intrusion detection is obtained.Secondly,a lightweight railway foreign object detection model is constructed by using sparse and channel pruning methods to compress YOLOv3model.Finally,through the railway data set and field test,it shows that proposed method has high detection accuracy and detection speed.The lightweight model parameter space is reduced to 1/5 of the original,and the detection speed is 3.4 times of Faster R-CNN method,and which is 1.3 times of YOLOv3 method.It can quickly and effectively detect the intrusion of railway foreign object in dangerous areas of different railway scenario,and reduce the error warning.
作者 陈永 卢晨涛 王镇 CHEN Yong;LU Chen-tao;WANG Zhen(School of Electronic and Information Engineering,Lanzhou Jiaotong University,Lanzhou 730070,China;Gansu Provincial Engineering Research Center for Artificial Intelligence and Graphics&Image Processing,Lanzhou Jiaotong University,Lanzhou 730070,China)
出处 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2022年第10期2405-2418,共14页 Journal of Jilin University:Engineering and Technology Edition
基金 国家自然科学基金项目(61963023,61841303) 兰州交通大学天佑创新团队项目(TY202003).
关键词 计算机应用 异物检测 感兴趣区域划分 轻量级网络 铁路 computer application intrusion detection region of interest division lightweight network railway
  • 相关文献

参考文献10

二级参考文献42

共引文献184

同被引文献22

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部