期刊文献+

船用固体氧化物燃料电池多物理场耦合模型与热应力分析

Multiphysics Coupling Model and Thermal Stress Analysis of Solid Oxide Fuel Cell for Ships
下载PDF
导出
摘要 为拓展燃料电池在船舶领域内的应用,针对固体氧化物燃料电池(SOFC)作为典型船舶电力推进系统动力时的电化学性能和热应力场分布规律进行研究。以实际生产的SOFC为原型,基于有限元法分别建立了矩形和弧形流道的多物理场三维模型,分析了典型工况下电极电化学反应、多组分传质和传热过程的耦合特性,并模拟了不同功能层的热应力。结果表明:相同工况下,相较于矩形流道,弧形流道在气体组分和温度梯度分布上更均匀;阴极电解质接触面上的热应力要高于阳极侧,且弧形流道的最大值相较于矩形流道,减少了43.3%;电流密度的最大值均位于肋板与电极交界处。 In order to expand the application of fuel cell in marine field,the electrochemical performance and thermal stress field distribution of solid oxide fuel cell(SOFC)as the power of typical marine electric propulsion system are studied.A three-dimensional multi-physics model is developed for the rectangular and arch flow channels based on a practical SOFC by employing finite element method.The correlation with electrochemical reactions,the multi-component heat and mass transfer processes in the electrodes under typical working conditions are analyzed.The determination of the thermal stress is analyzed.The results show that under the same working conditions,the cell within the arch channels is more even than that within the rectangular channels,in terms of the distribution for the gas composition and temperature gradient.The thermal stress on the cathodic contacting surface is higher than that on the anodic side,while that for the case with the arch channels is 43.3%obviously lower than that within the rectangular channels.The maximum current density of the two flow channels is located at the junction of the ribs and the electrodes.
作者 蔡伟强 郑青榕 袁金良 尹自斌 张中刚 CAI Weiqiang;ZHENG Qingrong;YUAN Jinliang;YIN Zibin;ZHANG Zhonggang(Marine Engineering Institute,Jimei University,Xiamen 361021,Fujian,China;Fujian Provincial Key Laboratory of Naval Architecture and Ocean Engineering,Xiamen 361021,Fujian,China;Faculty of Maritime and Transportation,Ningbo University,Ningbo 315832,Zhejiang,China)
出处 《船舶工程》 CSCD 北大核心 2022年第9期114-120,共7页 Ship Engineering
基金 国家自然科学基金(51979121) 福建省自然科学基金(2021J01846,2022J01807) 集美大学国家基金培育计划项目(ZP2022001)。
关键词 船舶推进系统 固体氧化物燃料电池 热应力场 电化学模型 多物理场耦合 ship propulsion system solid oxide fuel cell(SOFC) thermal stress field electrochemical reaction model multiphysics process coupling
  • 相关文献

参考文献7

二级参考文献38

  • 1黄允千,魏霖.燃料电池艇的温度控制系统探索[J].电气技术,2008,9(1):67-70. 被引量:3
  • 2GUO Tao,WANG HuaiXin & ZHANG ShengJun Department of Thermal Energy and Refrigeration Engineering,Tianjin University,Tianjin 300072,China.Comparative analysis of CO_2-based transcritical Rankine cycle and HFC245fa-based subcritical organic Rankine cycle using low-temperature geothermal source[J].Science China(Technological Sciences),2010,53(6):1638-1646. 被引量:26
  • 3H. Tedesco, Mathew P. The Green Ship[J]. Marine Technology, 2012, 48(4): 4-16.
  • 4H. Jetey, B. Jay, Mark W'mskel. Accelerating the Development of Marine Energy: Exploring the Prospects, Benefits and Challenges [J]. Technological Forecasting &Social Change, 2013, 80(7): 1306-1316.
  • 5Hydrogen and Fuel Cells Program Plan (DOE) [EB/OL]. [2011-09-01 ] .http://www.hydrogen.energy.gov/pdfs/progra m_plan2011.pdf.
  • 6S. U. Jeong, R. K. Kim, E. A. Cho, et al. A Study on Hydrogen Generation from NaBH4 Solution Using the High-performance Co-B Catalyst [J]. Power Sources, 2005, 144(1): 129-134.
  • 7V. E McConnell. Now, Voyager: the Increasing Marine Use of Fuel Cells [J]. Fuel Cells Bulletin, 2010(5): 12-17.
  • 8G Sattler. Fuel Cells Going on-board[J]. Journal of Power Sources, 2000, 86(1-2): 61-67.
  • 9M. Foda. Proton for World's First Fuel Cell Passenger Ship[J]. News Fuel Cells Bull, 2008, 2: 3.
  • 10E Ovrum, G Dimopoulos. A Validated Dynamic Model of the First Marine Molten Carbonate Fuel Cell[J]. Applied Thermal Engineering, 2012, 35(1): 15-28.

共引文献78

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部