摘要
本文针对性地设计了一个常规的三层感知机作为神经网络的预测模型,并采用与感知机相同输入、相同隐层的受限玻尔兹曼机作为特征提取器,对数据深层次特征进行提取,并将特征提取后得到的权值矩阵移植到神经网络中进行初始化,最后利用反向传播算法(BP)进行第一层与第二层之间的微调和第二层和第三层之间的训练,随机取指标的4/5作为训练集。最终,模型拟合精度达到0.90以上,MSE为0.0849,并且建立基于灰色理论的预测模型进行对比分析。采用这两种预警模型对未来污水监测采样点30天的变化进行预测,并根据预测结果分析两种模型的优缺点及推广可行性。
In this paper,a conventional three-layer perceptron is designed as the neural network prediction model,and the restricted Boltzmann machine with the same input and the same hidden layer as the perceptron is used as the feature extractor to extract the deep-seated features of the data,and the weight matrix obtained after the feature extraction is transplanted to the neural network for initialization.Finally,the back propagation algorithm(BP)is used to fi ne tune the fi rst layer and the second layer and train the second layer and the third layer,randomly take 4/5 of the index as the training set.Finally,the fi tting accuracy of the model reached above 0.90,and the MSE was 0.0849.And the prediction model based on grey theory is established for comparative analysis.The two epidemic warning models are used to predict the 30 day change of sewage monitoring sampling points in the future,according to the prediction results,the advantages and disadvantages of the two models are analyzed.
作者
周希杰
田博文
郑宏飞
张昱
Zhou Xijie;Tian Bowen;Zheng Hongfei;Zhang Yu(Fuyang Normal University,Fuyang 236041,China;Huizhou Merchants Bank Co.,Ltd.,Bozhou Branch,Bozhou 236800,China;Anhui Vocational and Technical College,Hefei 230011,China)
出处
《皮革制作与环保科技》
2022年第23期150-152,共3页
Leather Manufacture and Environmental Technology
关键词
污水监测采样点
RBM神经网络预测强化学习
特征选择
RLFS方法
灵敏度分析
sewage monitoring sampling point
RBM neural network predictive reinforcement learning
feature selection
RLFS method
sensitivity analysis