摘要
针对飞秒激光烧蚀面齿轮材料18Cr2Ni4WA,建立了电子-自旋-晶格三温耦合模型。仿真分析了面齿轮材料在1.035、2.467、3.899、4.506和5.252 J/cm^(2)能量密度下,电子、自旋和晶格在单脉冲能量效应下30 ps内温度变化过程,通过试验研究了不同能量密度下烧蚀凹坑形貌和粗糙度等特征的演变关系。研究表明,自旋系统温度最终被晶格系统温度冷却,随着能量密度的增大,电子温度急剧上升且电子、自旋和晶格温度的平衡时间也增大。烧蚀凹坑的直径和深度随着能量密度的增加而变大,齿面粗糙度随着能量密度的增加并不会持续变小。试验验证了三温耦合模型仿真的面齿轮材料烧蚀特征,可为提高面齿轮加工质量提供参考。
In this paper, an electron-spin-lattice three-temperature coupling model is established for the femtosecond laser ablation of the face gear material 18 Cr2 Ni4 WA. The temperature change process of the face gear material under the effect of electron, spin and lattice single pulse energy at different energy densities is simulated and analyzed, and the evolution relationship of ablation crater morphology and roughness and other characteristics under different energy densities is experimentally studied. It is shown that the temperature of the spin system is finally cooled by the temperature of the lattice system, and the temperature of the electron increases sharply with the increase of energy density and the equilibrium time of the electron, spin and lattice temperatures also increases. The diameter and depth of the ablation crater become larger with increasing energy density, and the tooth surface roughness does not get better continuously with increasing energy density. The ablation characteristics of the face gear material simulated by the three-temperature coupled model are experimentally verified, which can provide a reference for improving the quality of face gear processing.
作者
贾松权
明兴祖
刘克非
周贤
马玉龙
袁磊
Jia Songquan;Ming Xingzu;Liu Kefei;Zhou Xian;MI Yulong;Yuan Lei(School of Mechanical Engineering,Hubei University of Artsand Science,Xiangyang,Hubei 441053,China;School of Mechanical Engineering,Hunan University of Technology,Zhuzhou,Hunan 412007,China)
出处
《应用激光》
CSCD
北大核心
2022年第10期81-92,共12页
Applied Laser
基金
国家自然科学基金资助项目(51975192)
湖南省自然科学基金(2021JJ30214、2021JJ50042)
“机电汽车”湖北省优势特色学科群开放基金(XKQ2021044、XKQ2021050)
湖北省高等学校优秀中青年科技创新团队(T201919)。
关键词
面齿轮
三温耦合
能量密度
凹坑形貌
粗糙度
face gear
three-temperature coupling
energy density
crater morphology
roughness