摘要
针对赛道环境下欧氏聚类算法检测锥桶不准确的问题,提出了一种基于改进欧氏聚类算法的锥桶检测方法。首先,通过机器人操作系统(ROS)采集点云;再对点云预处理,找到感兴趣区域(ROI)后,利用随机采样算法分离地面和锥桶的点云;然后,将距离和阈值模型化;接着,设计出面向赛道环境的区域划分方法来改进欧氏聚类算法,利用动态阈值聚类分割出锥桶点云;最后,通过Matlab平台验证算法。在两种赛道环境下进行实车试验,聚类分割的准确率分别达到93.98%和99%。试验结果表明,所提方法能够准确地检测赛道中的锥桶。
Aiming at the inaccurate detection of cone buckets by Euclidean clustering algorithm in the race track environment, a cone bucket detection method based on improved Euclidean clustering algorithm is proposed. Firstly, the point clouds are collected through the robot operating system(ROS);then the point clouds are preprocessed to find the region of interest(ROI) and then the ground and cone bucket point clouds are separated using a random sampling algorithm;then the distances and thresholds are modeled;then a region partitioning method is designed for the track environment to improve Euclidean clustering algorithm, and the cone bucket point clouds are segmented using dynamic threshold clustering;finally the algorithm is validated through the Matlab platform. The accuracy of clustering segmentation reached 93.98% and 99% in real-world tests under two track environments, respectively. The test results show that the proposed method can accurately detect the cone bucket in the track.
作者
黄瑞钦
梁洪波
李强
杨爱喜
张新闻
Huang Ruiqin;Liang Hongbo;Li Qiang;Yang Aixi;Zhang Xinwen(School of Mechanical and Energy Engineering,Zhejiang University of Science&Technology,Hangzhou,Zhejiang 310023,China;Department of Automobile and Engineering,Anhui Communications Vocational&Technical College,Hefei,Anhui230051,China;Pol ytechnic Institute of Zhejiang University,Hangzhou,Zhejiang 310015,China)
出处
《应用激光》
CSCD
北大核心
2022年第10期126-134,共9页
Applied Laser
基金
安徽省教育厅2020年度高校科学研究重大项目(KJ2020ZD78)
浙江省自然科学基金项目(LY21E050001)
汽车新技术安徽省工程技术研究中心开放基金(QCKJ202105)。
关键词
激光雷达
锥桶检测
欧氏聚类
区域划分
lidar
cone detection
euclidean clustering
regional division