摘要
随着环保意识与能源危机加速的影响,汽车轻量化技术得以发展,但仍需以保证汽车被动安全性能为前提。基于汽车碰撞过程的高应变速率和大变形特点,针对于汽车安全构件用材,详细介绍了多应变速率下的拉伸试验、断裂试验和零部件试验。结合仿真分析技术,以汽车用金属板材为对象,从力学性能及断裂性能两方面,对汽车碰撞过程中的材料动态响应及断裂行为进行表征,完整地介绍金属材料断裂模型的建立及应用过程,为汽车碰撞安全领域精准材料模型的建立提供参考。以目前广泛用于安全构建的热成形材料为例,通过上述试验获得材料在不同状态的力学性能数据,通过数据处理及仿真分析,建立动态材料断裂失效分析模型,并用于实际零件的失效仿真模拟,准确预测了零件的断裂行为,验证了本方法的适用性。
With the impact of environmental protection awareness and the accelerated energy crisis,automotive lightweight technology has been developed rapidly.However,it is necessary to ensure the passive safety performance of automobiles in the lightweight process.In this paper,the tensile tests under different strain rates,fracture tests and automotive safety component test are introduced in details on the basis of the dynamic strain response and large deformation characteristics of the automobile in collision process.The metallic alloy sheets are adopted and their dynamic response and fracture behavior are summarized from the aspects of mechanical properties and fracture performance.The establishment and application process of the fracture model of metal materials are fully presented in the paper and provides a reference for the establishment of accurate material model in the field of vehicle collision safety.Taking the press forming material which has been widely used in safety components as an example,the mechanical properties of the material in different states are obtained through the above-mentioned tests.Through data processing and simulation analysis,the dynamic material fracture model is established and used in the failure simulation of actual parts.The result indicate the mode is practical and can accurately predict the fracture behavior of parts.
作者
周佳
梁宾
万鑫铭
高翔
方刚
姜子涵
ZHOU Jia;LIANG Bin;WAN Xinming;GAO Xiang;FANG Gang;JIANG Zihan(China Automotive Engineering Research Institute Co.,Ltd.,Chongqing 401122)
出处
《机械工程学报》
EI
CAS
CSCD
北大核心
2022年第20期339-349,共11页
Journal of Mechanical Engineering
基金
国家重点研发计划(2016YFB0101607)
国家自然科学/中国汽车产业创新发展联合基金(U1764252)资助项目。
关键词
动态变形
材料力学
本构模型
断裂模型
dynamic deformation
material mechanics
constitutive mode
fracture mode