期刊文献+

基于共形几何代数的两种6自由度串并混联机构位置逆解分析

Inverse Position Analysis of Two Kinds of 6-DOF Serial-parallel Manipulators Based on Conformal Geometric Algebra
原文传递
导出
摘要 基于共形几何代数(Conformal geometric algebra,CGA)基本理论,解决了(3-PRS)+(3-SPR)和(3-RPS)+(3-SPS+UP)两种典型串并混联机构的位置逆解问题。首先根据机构的几何结构特征选择合适的未知参数,基于共形几何代数的基本运算建立了与该参数相关的机构中间平台某一顶点的数学表达式;然后根据该顶点坐标表达式和机构中存在的几何和尺寸约束,构造若干相关的平面或球面几何体,并对其进行外积求交运算得出中间平台其他两个顶点坐标的共形几何表达式;最后结合得到的顶点坐标与共形几何代数中的矢量内积运算,推导出只含有一个未知参数的多项式方程,由此得到机构的全部位置反解。该方法具有计算简明、高效、几何直观性强的特点,避免了传统方法求解串并混联机构位置逆解时冗长复杂的计算过程,为此类机构位置逆解的研究提供了参考。 Based on the basic theory of conformal geometric algebra(CGA),the inverse displacement of(3-PRS)+(3-SPR)and(3-RPS)+(3-SPS+UP)typical serial-parallel manipulators are solved.First,a single unknown is selected according to the geometrical structure of the manipulators,and based on the basic operation of CGA,the mathematical expression of a vertex of the intermediate platform of the manipulators related to this parameter is established.Secondly,according to the coordinate expression of the this vertex and the geometric and dimensional constraints in the manipulators,some basic geometric elements including planes and spheres are constructed,and the conformal geometric expression of the coordinates of other two vertices of the intermediate platform are obtained using the outer product intersection operation.At last,combined with the expressions of the obtained vertices and the inner product operation in CGA,the input-output polynomial equation with a single unknown can be derived and all the inverse position solutions of the manipulators are obtained.The method has the characteristics of simple calculation,high efficiency and remarkable geometric intuition.It avoids the tedious and complicated calculation process compared with traditional methods,and provides a reference for the study of the inverse position analysis of serial-parallel manipulators.
作者 胡波 高俊林 霍焱 张达 曾达幸 卢文娟 HU Bo;GAO Junlin;HUO Yan;ZHANG Da;ZENG Daxing;LU Wenjuan(Parallel Robot and Mechatronic System Laboratory of Hebei Province,Yanshan University,Qinhuangdao 066004;Key Laboratory of Advanced Forging&Stamping Technology and Science of Ministry of National Education,Yanshan University,Qinhuangdao 066004;Xuzhou Heavy Machinery Co.,Ltd.,Xuzhou 221004;School of Mechanical Engineering,Dongguan University of Technology,Dongguan 533808)
出处 《机械工程学报》 EI CAS CSCD 北大核心 2022年第21期60-68,共9页 Journal of Mechanical Engineering
基金 河北省自然科学基金面上(E2020203027) 河北省中央引导地方科技发展资金(206Z7602G) 广东省普通高校机器人与智能装备重点实验室(2017KSYS009) 东莞理工学院机器人与智能装备创新中心(KCYCXPT2017006) 2021年东莞市科技特派员(20211800500242)资助项目。
关键词 共形几何代数 串并混联机构 位置逆解 conformal geometric algebra serial-parallel manipulator inverse displacement
  • 相关文献

参考文献5

二级参考文献48

  • 1李洪波.共形几何代数——几何代数的新理论和计算框架[J].计算机辅助设计与图形学学报,2005,17(11):2383-2393. 被引量:36
  • 2Tsai L W, Morgan A. Solving the kinematics of the most general six and five-degree-of-freedom manipulators by continuation methods[J]. Mechanism and Machine Theory, 1985, 107(2): 189-200.
  • 3Primrose E J F. On the input-output equation of the general 7R mechanism[J]. Mechanism and Machine Theory, 1986, 21(5). 509-510.
  • 4Lee H Y, Liang C G. Displacement analysis of the general spatial 7-link 7R mechanism[J]. Mechanism and Machine Theory, 1988, 23(3): 219-226.
  • 5Raghavan M, Roth B. Inverse kinematics of the general 6R manipulator and related linkages[J ]. ASME Journal of Mechanical Design, 1993, 115(3): 502-508.
  • 6Manocha D, Canny J F. Efficient inverse kinematics for general 6R manipulators [ J ]. IEEE Transaction on Robotics and Automation, 1994, 5(10) : 648-657.
  • 7Clifford W K. Application of Grassmann' s extensive algebra[J]. Amer. J. of Math, 1878, 1: 350-358.
  • 8Li Hongbo, Hestenes D, Rockwood A. Generalized homogeneous coordinates for computational geometry [M]. Heidelberg: Springer, 2001: 27-60.
  • 9Havel T. Geometric Algebra and Mbius Sphere Geometry as a Basis for Euclidean Invariant Theory[M]. White N ed., In: Invariant Methods in Discrete and Computational Geometry, Dordrecht: Kluwer, 1994. 245~256.
  • 10Mourrain B, Stolfi. Computational Symbolic Geometry[M]. White N ed., In: Invariant Methods in Discrete and Computational Geometry, Dordrecht: Kluwer, 1994. 107~140.

共引文献56

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部