期刊文献+

PCD磨棒磨削参数对C_(f)/SiC磨削质量影响的试验研究

Experimental Study on Effect of PCD Rod Grinding Parameters on Grinding Quality of C_(f)/SiC Composites
下载PDF
导出
摘要 以3D C_(f)/SiC复合材料为研究对象,利用钎焊聚晶金刚石磨棒在不同的磨削加工参数下,开展该材料的磨削加工试验,研究不同加工参数下磨削力、加工表面质量以及表面粗糙度的变化规律。试验研究结果表明:磨削力主要受磨削宽度影响,且随着磨削宽度的增大而增大;表面粗糙度主要受磨削深度和主轴转速影响,且随着磨削深度的增大而增大,随主轴转速的增大而减小。当磨削加工参数为主轴转速2500 r/min、进给速度100 mm/min、磨削深度1 mm、磨削宽度2 mm时,磨削过程中的磨削力小、材料去除率高以及加工表面质量较优。 With 3D C_(f)/SiC composite material as the research object,the grinding test of the material is carried out by using polycrystalline diamond grinding rod under different grinding parameters,and the change rules of grinding force,processing surface quality and surface roughness size are studied under different processing parameters.The test results show that the grinding force is mainly affected by the grinding width,and increases along with the increase of grinding width,while the surface roughness is mostly affected by the grinding depth and spindle speed,increases with the increase of grinding depth,and decreases with the increase of spindle speed.When the grinding parameters select spindle speed at 2500 r/min and feed speed at 100 mm/min with grinding depth as 1 mm and grinding width as 2 mm,grinding force in the grinding process is small,material removal rate is high and processing surface quality becomes better.
作者 安书正 赵国龙 徐亮 王凯 王新永 李军平 李亮 AN Shuzheng;ZHAO Guolong;XU Liang;WANG Kai;WANG Xinyong;LI Junping;LI Liang(College of Mechanical and Electrical Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China;Key Laboratory of Advanced Functional Composites Technology,Research Institute of Aerospace Materials&Processing Technology,Beijing 100076,China)
出处 《机械制造与自动化》 2022年第6期6-11,共6页 Machine Building & Automation
基金 国家自然科学基金资助项目(52075255) 中央高校基本科研业务费专项资金项目(NT2021020)。
关键词 3D C_(f)/SiC复合材料 磨削 钎焊聚晶金刚石磨棒 磨削加工参数 加工质量 3D C_(f)/SiC composites grinding PCD grinding rod grinding parameters machining quality
  • 相关文献

参考文献2

二级参考文献17

  • 1张立同,成来飞.连续纤维增韧陶瓷基复合材料可持续发展战略探讨[J].复合材料学报,2007,24(2):1-6. 被引量:209
  • 2[1]NASLAIN R.Design,preparation and properties of nonoxide CMCs for application in engines and nuclear reactors:an overview[J].Composites Sci Technology,2004,64(2):155-170.
  • 3[3]IMUTA M,GOTOH J.Development of high temperature materials including CMCs for space application[J].Key Engineering Mater,1999,164/165:439-444.
  • 4[4]FITZER E,GADOW R.Fiber-reinforced silicon carbide[J].Amer Ceram Soc Bull,1986,65(2):326-335.
  • 5[5]ICHIKAWA H,OKAMURA K,SEGUCHI T.Oxygen-free ceramic fibers from organosilicon precursors and E-beam curing[J].Manufacturing and Materials Development,1995,58(2):65.
  • 6[6]PREWO K M,BRENNAN J J,LAYDEN G K.Fiber reinforced glasses and glasses-ceramics for high performance applications[J].Amer Ceram Soc Bull,1986,65(2):305-313.
  • 7[8]NASLAIN R.Processing of ceramic matrix composites[J].Key Engineering Materials,1999,164(1):3-8.
  • 8[10]MEHAN R L.Effect of SiC content and orientation on the properties of Si/SiC ceramic composite[J].J Mater Sci,1978,13(2):358-366.
  • 9[11]HUCKE E E.Process development for silicon carbide based structural ceramics[R].DAAG 46-80-C-0056-P0004,Germany:Army Materials and Mechanic Research Center Interium,1983.
  • 10[12]HILLING W B.Making ceramic composites by melt infitration[J].Amer Ceram Soc Bull,1994,73(4):56-62.

共引文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部