期刊文献+

长江上游大中型水库碳排放量估算与分析:以IPCC国家温室气体清单指南为基础 被引量:8

Estimation and analysis of carbon emissions from the large-and medium-sized reservoirs in the upper reaches of Changjiang River:On the basis of the IPCC National Greenhouse Gas Inventory
下载PDF
导出
摘要 “双碳”背景下,我国能源结构面临持续转型发展。作为清洁可再生能源,水电开发是近年来长江上游水资源开发利用的重点工作。然而,筑坝蓄水将在一定程度上改变区域碳排放情况。评估水库碳排放量是客观、科学认识水电清洁能源属性的基础,是国家温室气体清单的一个重要组成部分。基于IPCC国家温室气体清单指南层级1(Tier 1)的方法,以长江上游24个中、大型水库为案例,探讨长江上游典型水库生命周期内的碳排放量,并通过蒙特卡洛模拟对估算结果进行不确定性分析及模型参数的敏感性分析。结果显示,24个水库的生命周期碳排放量分布在0.0342~140.59 Tg CO_(2eq)的区间内,总排放量达到264.05 Tg CO_(2eq)(其中,CO_(2)排放量占9.12%,CH 4排放量占90.88%),单位发电量的碳排放均值为3.30 g CO_(2eq)/(kW·h)(0.01~17.64 g CO_(2eq)/(kW·h)),最小、最大值分别出现在锦屏二级水库和彭水水库。此外,敏感性分析发现,在模型涉及的参数中,营养程度调整系数的不确定性对最终估算结果的不确定性起主导作用,下游CH 4通量与水库水气界面CH 4通量的比值敏感性最小。研究工作可为后续推广应用IPCC国家温室气体清单提供参考。 The energy structure in China is facing sustainable transformation and development.Hydropower,as a source of clean energy,is widely built up in the upper reaches of Changjiang River drainage basin where great terrain differences occurred.However,there is a lack of research on the greenhouse gases(GHGs)emissions of reservoirs in the hydropower life cycle in a specific region,and the inconsistent estimation methods lead to poor comparability of the estimation results.Based on Tier1 in the IPCC National Greenhouse Gas Inventories,this study explores the life cycle GHGs emissions of 24 medium and large reservoirs in the upper reaches of Changjiang River,and conducts uncertainty and sensitivity analysis of model parameters through Monte Carlo simulation.The results show that the average carbon emissions of the 24 reservoirs are distributed in the range of 0.0342-140.59 Tg CO_(2eq).The total carbon emissions reached 264.05 Tg CO_(2eq)(CO_(2) emissions accounted for 9.12%,CH 4 emissions accounted for 90.88%).The average carbon emission per unit power generation is 3.30 g CO_(2eq)/(kW·h)(0.01-17.64 g CO_(2eq)/(kW·h)),and the minimum and maximum values appeared in JinpingⅡReservoir and Pengshui Reservoir,respectively.In addition,sensitivity analysis found that among the parameters involved in the model,the nutritional adjustment coefficient played a leading role in the uncertainty of the final estimation results,while the ratio of total downstream flux of CH 4 to the flux of CH 4 from a reservoir s surface to the atmosphere had the weakest sensitivity to results.This provides good guidance to select parameters when using this model and to carry out sampling detection in the future.
作者 李雨晨 秦宇 杨柳 李哲 鲁伦慧 Li Yuchen;Qin Yu;Yang Liu;Li Zhe;Lu Lunhui(Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education,Chongqing Jiaotong University,Chongqing 400074,P.R.China;Chongqing Institute of Green and Intelligent Technology,Chinese Academy of Sciences,Chongqing 400714,P.R.China;Chongqing School,University of Chinese Academy of Sciences,Chongqing 400714,P.R.China)
出处 《湖泊科学》 EI CAS CSCD 北大核心 2023年第1期131-144,I0007,共15页 Journal of Lake Sciences
基金 国家自然科学基金面上项目(51861125204) 中国长江三峡集团有限公司科研项目(202103493)联合资助。
关键词 政府间气候变化专门委员会(IPCC) 水淹地 长江上游 碳排放 敏感性分析 Intergovernmental panel on climate change(IPCC) flooded land the upper Changjiang River carbon emissions sensitivity analysis
  • 相关文献

参考文献6

二级参考文献94

  • 1钟华平,刘恒,耿雷华.澜沧江流域梯级开发的生态环境累积效应[J].水利学报,2007,38(S1):577-581. 被引量:58
  • 2刘文新,朱志辉.发电水库的温室气体排放[J].人类环境杂志,1994,23(2):164-165. 被引量:2
  • 3Crowley T J. Causes of climate change over the past 1 000 years[J]. Science, 2000, 289 : 270-277.
  • 4Tett S F B, Stott P A, Allen M R, et al. Causes of twentiethcentury temperature change near the earth's surface [ J]. Nature, 1999, 399:569-572.
  • 5Delmas R, Richard S, Gurrin F, et al. Long term greenhouse gas emissions from the hydroelectric reservoir of Petit Saut (French Guiana) and potential impacts [A]. In: Tremblay A, Varfalvy L, Roehm C, et al (eds). Greenhouse Gas Emissions-Fluxes and Processes. Hydroelectric Reservoirs and Natural Environments[C].New York: Springer Berlin Heidelberg, 2005. 293-312.
  • 6Rosa L P, Schaeffer R. Greenhouse gas emissions from hydroelectric reservoirs [J]. AMBIO, 1994 23(2) :164-165.
  • 7Rudd J W M, Harris R, Kelly C A, et al. Are hydroelectric reservoirs significant sources of greenhouse gases? [ J ] AMBIO, 1993, 22(4) :246-248.
  • 8Fearnside P M. Hydroelectric dams in Brazilian Amazonian: response to Rosa, Schaeffer and dos Santos [ J]. Environmental Conservation, 1996, 23(2) : 105-108.
  • 9Fearnside P M. Greenhouse gas emissions from hydroelectric dams: Reply to Rosa et al[J]. Climatic Change, 2006, 75(1-2) : 103- 109.
  • 10Rosa L P, Santos M A D, Matvienko B, et al. Scientific errors in the Fearnside comments on greenhouse gas emissions (GHG) from hydroelectric dams and response to his political claiming[J].Climatic Change, 2006, 75:91-102.

共引文献86

同被引文献66

引证文献8

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部