期刊文献+

求解多右端对称线性方程组的BMINBACK方法的理论分析与执行 被引量:1

Theoretical analysis and implementation of the BMINBACK method for symmetric linear systems with multiple right-hand sides
下载PDF
导出
摘要 研究求解对称多右端线性方程组的极小向后扰动块方法.在块Lanczos执行的过程中采用极小向后扰动范数作为终止算法的条件,对向后扰动的格式及其范数极小值的求法做深入的理论分析,进一步论证了块方法与向后扰动相结合的可行性.通过多组数值实验验证新方法的有效性和优越性.. The minimal backward perturbation block method for solving symmetric linear systems with multiple right-hand sides is studied.The minimal backward perturbation norm is used as the termination condition for the block Lanczos process,the theoretical analysis is discussed on the form of backward perturbation and the method of finding the minimum norm,the feasibility of combining the block process with backward perturbation is further demonstrated.Some numerical experiments are carried out to verify the effectiveness and superiority of the new method.
作者 李欣 朱景福 李启勇 LI Xin;ZHU Jingfu;LI Qiyong(School of Science,Guangdong University of Petrochemical Technology,Maoming 525000,China)
出处 《高师理科学刊》 2022年第11期1-7,共7页 Journal of Science of Teachers'College and University
基金 广东石油化工学院人才引进项目(2018rc44,2018rc45)。
关键词 KRYLOV子空间 多右端 线性方程组 块Lanczos方法 病态矩阵 Krylov subspace multiple right-hand sides linear system block Lanczos process ill-conditioned matrix
  • 相关文献

参考文献4

二级参考文献11

  • 1李欣.求解非对称线性方程组的总体拟极小向后扰动方法[J].南京大学学报(自然科学版),2005,41(4):350-355. 被引量:2
  • 2李欣 ,戴华 .解对称线性方程组的总体最小扰动方法[J].南京大学学报(数学半年刊),2005,22(2):315-322. 被引量:4
  • 3SAAD Y. Krylov subspace method for solving large unsymmetric linear systems[J]. Math Comp, 1981, 37: 105 - 126.
  • 4SAAD Y. The Lanczos biorthogonalization algorithm and other oblique projection method for solving Large unsymmetric systems [ J]. SIAM J Numer Anal, 1982, 19 (3) :485 -506.
  • 5FREUND R W, NACHTIGAL N M. QMR: A quasiminimal residual method for non-hermitian linear systems[J]. Numer Math, 1991, 60:315 -337.
  • 6SAAD Y,SCHULTZ M H. GMRES: A generalized minimal residual algorithm for solving unsymmetrie linear systems[J]. SIAM J Sci Statist Comput, 1986, 7(3) : 856 - 869.
  • 7KASENALLY E M. GMBACK: A generalized minimum backward error algorithm for nonsymmetric linear systems [J]. SIAM J Sci Comput, 1995, 16(3) :698-719.
  • 8MORGAN R B. A restarted GMRES methods augmented with eigenvectors[ J ]. SIAM J Matrix Anal Appl, 1995, 16(4) :1154 -1171.
  • 9CHAPMA, N A,SAAD Y. Deflated and augmented Krylov subspace techniques[J]. Numer Linear Algebra Appl, 1997 ,4( 1 ) :43 - 66.
  • 10SAAD Y, YEUNG M,ERHEL J, et al. A deflated version of the conjugate gradient algorithm[ J]. SIAM J Sci Comput, 2000, 21 (5) : 1909 - 1926.

共引文献15

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部