摘要
设G是阶为n(n≥3)的2一连通{K_(1,4),K_(1,4)+e}-free图,连通度为k,给出了{K_(1,4),K_(1,4)+e}图的Hamilton性的邻集交条件,即如果对于每一个k+1个点的独立集S,存在u,v∈S,有|N(u)∩N(v)|≥max{n-k-2/4,2},则G是Hamilton图.
Let G be a 2-connected{K_(1,4),K_(1,4)+e}-free graph of order n(n≥3)and connectivityk,the neighborhood intersection condition of Hamiltonian property in{K_(1,4),K_(1,4)+e}-free graph was given,that is,if for any independent setSof cardinality k+1,there exist u,v∈S,implies|N(u)∩N(v)|≥max{n-k-2/4,2},then G is a Hamilton graph.
作者
沈雷
SHEN Lei(Department of Basic Course Teaching,Shandong Agriculture and Engineering University,Jinan 250100,China)
出处
《高师理科学刊》
2022年第11期37-40,共4页
Journal of Science of Teachers'College and University
基金
山东省教育教学研究课题(2021JXY009)
山东农业工程学院青年教师科研项目(QNKZY201906)。