摘要
考虑当前模型在新能源供电出力调度中存在难度大、经济性差的问题,设计了计及协同调峰的新能源供电出力调度模型。利用协同调峰的方式,规划居民的用电时段,根据不同的时间尺度,制定了新能源供电出力调度计划。采用非参数估计方法,拟合处理了储能额定功率和最小容量,使用粒子群算法,寻找储能配置目标函数的最优值,得到新能源供电系统中蓄电池的使用寿命,完成新能源供电系统的储能容量配置。以供电系统的最小运营成本为目标函数,构建了新能源供电出力调度模型,通过柯西变异算法改进了粒子群算法,实现了新能源供电出力调度。算例结果表明,文中调度模型在新能源供电出力调度中能够降低调度难度,有效提高新能源供电出力调度的经济性。
Considering the difficulty and poor economy of the current model in the new energy power supply output scheduling,a new energy power supply output scheduling model considering collaborative peak shaving was designed.In the way of coordinated peak shaving,the residents power consumption period was planned,and the new energy power supply output dispatching plan was formulated according to different time scales.The non parameter estimation method was used to fit the rated power and minimum capacity of energy storage.Particle swarm optimization algorithm was used to find the optimal value of the energy storage configuration objective function,obtained the service life of the battery in the new energy power supply system,and completed the energy storage capacity configuration of the new energy power supply system.Taking the minimum operating cost of the power supply system as the objective function,a new energy power supply output scheduling model was constructed.Particle swarm optimization algorithm was improved through Cauchy mutation algorithm to achieve new energy power supply output scheduling.The example results showed that the dispatching model in this paper could reduce the difficulty of dispatching in the new energy power supply output dispatching,and effectively improved the economy of the new energy power supply output dispatching.
作者
徐超
张宇
于伟
刘富田
周强
Xu Chao;Zhang Yu;Yu Wei;Liu Futian;Zhou Qiang(Spic Power Plant Operation Technology(Beijing)Co.,Ltd.,Beijing 102200,China)
出处
《能源与环保》
2022年第12期237-243,共7页
CHINA ENERGY AND ENVIRONMENTAL PROTECTION
基金
国网福建省电力有限公司莆田供电公司科技项目(B31320210650B)。
关键词
协同调峰
调度模型
计划安排
新能源供电
储能容量
需求响应
collaborative peak shaving
scheduling model
plan arrangement
new energy power supply
energy storage capacity
demand response