期刊文献+

Tungsten Blue Oxide as a Reusable Electrocatalyst for Acidic Water Oxidation by Plasma-Induced Vacancy Engineering 被引量:1

原文传递
导出
摘要 In contrast to alkaline water electrolysis,acidic water electrolysis remains an elusive goal due to the lack of earth-abundant,efficient,and acid-stable water oxidation electrocatalysts.Here,we show that materials with intrinsically poor electrocatalytic activity can be turned into active electrocatalysts that drive the acidic oxygen evolution reaction(OER)effectively.This development is achieved through ultrafast plasma sputtering,which introduces abundant oxygen vacancies that reconstruct the surface electronic structures,and thus,regulated the surface interactions of electrocatalysts and the OER intermediates.Using tungsten oxide(WO_(3))as an example,we present a broad spectrum of theoretical and experimental characterizations that show an improved energetics of OER originating from surface oxygen vacancies and resulting in a significantly boosted OER performance,compared with pristine WO_(3).Our result suggests the efficacy of using defect chemistry to modify electronic properties and hence to improve the OER performance of known materials with poor activity,providing a new direction for the discovery of acid-stable OER catalysts.
出处 《CCS Chemistry》 CAS 2021年第3期1553-1561,共9页 中国化学会会刊(英文)
基金 supported by the King Abdullah University of Science and Technology(KAUST)。
  • 相关文献

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部