摘要
第五代(5G)无线通信网络采用的大规模多输入多输出(MIMO)技术需要大量空口资源估计和反馈MIMO信道。除优化导频、估计和反馈设计外,对信道衰落的预测也是节约空口资源的有效途径。运用相空间重构方法研究三维信道模型相关的相空间重构参数,提出一种基于经验知识的小样本在线学习方法,对MIMO信道系数和信道容量进行预测。研究发现无线信道数据具有混沌性,相空间延迟时间和嵌入维数服从一定分布,因此可以作为实时预测的先验参数进行设定。实验结果表明,该方法预测效率比传统ARMA方法提升6倍左右,信道容量的平均误差最小为5.91%。最后,采用某市区的实测数据验证相空间重构方法的有效性,信道容量的预测平均误差最小为0.91%。
The fifth generation(5 G)wireless communication network uses multiple input multiple output(MIMO)technology,which requires a lot of air interface resource estimation and feedback MIMO channel.Besides optimizing pilot,estimation and feedback design,channel fading prediction is also an effective way to save air interface resources.In this paper,phase space reconstruction method is used to study the phase space reconstruction parameters related to three-dimensional channel model,and a small sample online learning method based on empirical knowledge is proposed to predict MIMO channel coefficients and channel capacity.It is found that the wireless channel data is chaotic,and the phase space delay time and embedding dimension obey a certain distribution,so it can be set as the prior parameters of real-time prediction.Experimental results show that the prediction efficiency of the proposed method is about six times higher than that of the traditional ARMA method,and the minimum average error of channel capacity is 5.91%.Finally,the effectiveness of the phase space reconstruction method is verified by the measured data of an urban area,and the minimum average error of channel capacity prediction is 0.91%.
作者
冯馨玉
李凯
任天锋
李汉辉
杨旸
周明拓
FENG Xinyu;LI Kai;REN Tianfeng;LI Hanhui;YANG Yang;ZHOU Mingtuo(Shanghai Institute of Microsystem and Information Technology,Chinese Academy of Sciences,Shanghai 200050,China;ShanghaiTech University,Shanghai 201210,China;University of Chinese Academy of Sciences,Beijing 100049,China)
出处
《中国科学院大学学报(中英文)》
CSCD
北大核心
2023年第1期135-143,共9页
Journal of University of Chinese Academy of Sciences
基金
上海市科学技术委员会项目(18511106500)资助。
关键词
无线信道预测
相空间重构
MIMO
5G
wireless channel prediction
phase space reconstruction
MIMO
5G