摘要
聚焦锆合金氧化膜形成过程,设计了研究型实验“Fe、Sn、Nb元素对锆合金氧化膜晶粒演变影响”。运用第一性原理和热力学方法分析了合金元素对ZrO_(2)结构稳定性影响以及扩散行为,计算了溶解能、分离能和自由能。基于相界面位向关系、晶格错配及微观弹塑性力学构建相场弹性能项,以晶体取向和合金元素含量为序参量建立多成分多相晶粒演变相场模型。揭示了Fe、Sn、Nb等合金元素在氧化膜中分布规律及对氧化膜微观组织演变的影响机制。培养学生运用仿真技术解决材料科学与工程领域科研问题的能力,加深学生对材料成分、结构与性能关系的理解,为具备宽厚视野的创新性应用型高素质人才培养奠定基础。
This paper focuseson the formation process of zirconium alloy oxide film,designsa research experiment"Effect of Fe,Sn and Nb elements on the grain evolution of zirconium alloy oxide film".The effects of alloying elements on structural stability and diffusion behavior of ZrO_(2)are analyzed by first principles and thermodynamic methods.The dissolution energy,separation energy and free energy are calculated.The elastic energy term of the phase field is constructed based on the phase interface orientation relationship,lattice mismatch and microscopic elastic-plastic mechanics.The phase field model of the evolution of multi-component polyphase grains isestablished with crystal orientation and alloying element content as order parameters.The distribution of Fe,Sn,Nb in the oxide film and the influence mechanism on the microstructure evolution of the oxide film are revealed.This experiment trains students to use simulation technology to solve scientific research problems in the field of materials science and engineering,deepens students’understanding of the relationship between material composition,structure and properties,and lays a foundation for the cultivation of innovative application-oriented high-quality talents with broad vision.
作者
崔国栋
张程菘
陈大志
赵毅
CUI Guodong;ZHANG Chengsong;CHEN Dazhi;ZHAO Yi(School of Materials Science and Engineering,Southwest Jiaotong University,Chengdu 610031,China;Yibin Institute of Southwest Jiaotong University,Yibin 644000,Sichuan,China;Science and Technology on Reactor Fuel and Materials Laboratory of Nuclear Power Institute of China,Chengdu 610005,China)
出处
《实验室研究与探索》
CAS
北大核心
2022年第10期132-137,共6页
Research and Exploration In Laboratory
关键词
合金元素
锆合金
相场模拟
晶粒演变
第一性原理
alloying elements
zircaloy
phase field simulation
grain evolution
first principles