摘要
[目的]为了解决水面无人艇(USV)路径规划中安全性和平滑性方面的问题,提出一种与障碍物距离可控的USV路径规划方法。[方法]首先,结合雷达图像生成栅格化环境信息,利用维诺场算法(VFA)为每个栅格添加危险势场并建立航行界限;其次,建立与航行界限关联的危险度函数对A^(*)算法的评价函数进行改进,利用改进的A^(*)算法进行路径规划;最后,针对航行路径转向角较大的问题,采用梯度下降法(GDM)进行航行路径的平滑处理,得到满足USV实际航行要求的连续平滑路径。[结果]仿真结果表明,所提路径规划方法通过设置不同的航行界限可以实现路径与障碍物之间距离的控制且平滑性符合航行要求。[结论]该方法在USV路径规划过程中具有一定的合理性和有效性,可为USV自主避障决策提供参考。
[Objectives]In order to solve the problems of safety and smoothness in the path planning of an unmanned surface vehicle(USV),a path planning method with a controllable distance from obstacles is proposed.[Methods]First,the raster environment information is generated in combination with the radar image,and the Voronoi field algorithm(VFA)is used to add the danger potential field to each grid and establish the navigation boundary;second,the risk function associated with the navigation boundary is established to improve the evaluation function of the A-star algorithm,and the improved A-star algorithm is used for path planning;finally,for the problem of the large course altering of the navigation path,the gradient descent method(GDM)is used to plot a continuous smooth navigation path that satisfies the actual navigation requirements of the USV.[Results]The simulation results show that the proposed path planning method can control the distance between the path and obstacles by setting different navigation boundaries,and the smoothness meets the navigation requirements.[Conclusions]The method proposed herein is reasonable and effective in the path planning process of USVs,and can provide references for USV autonomous obstacle avoidance decisionmaking.
作者
杨兵
赵建森
王胜正
谢宗轩
张学生
YANG Bing;ZHAO Jiansen;WANG Shengzheng;XIE Zongxuan;ZHANG Xuesheng(Merchant Marine College,Shanghai Maritime University,Shanghai 201306,China)
出处
《中国舰船研究》
CSCD
北大核心
2022年第6期209-215,共7页
Chinese Journal of Ship Research
基金
国家重点研发计划资助项目(2019YFB1600605)
上海市科技创新行动计划资助项目(18DZ1206101)
国家自然科学基金资助项目(51709167,52071199)。
关键词
水面无人艇
路径规划
改进A^(*)算法
路径平滑
梯度下降法
unmanned surface vehicle(USV)
path planning
improved A-star algorithm
path smoothing
gradient descent method