期刊文献+

Effects of copper ions on dissolution mechanism of marmatite 被引量:2

铜离子对铁闪锌矿溶解机制的影响
下载PDF
导出
摘要 The dissolution mechanism of marmatite in the presence of Cu^(2+)was intensively studied by experiments and density functional theory(DFT) calculations. Leaching experiments showed that Cu^(2+)accelerated marmatite dissolution at high temperatures(above 55 ℃), but the trend was reversed at low temperatures(below 45 ℃), which may be because the reaction mechanism between Cu^(2+)and marmatite changed from surface adsorption to bulk substitution with increasing temperature. The substitution reaction caused more zinc atoms in the marmatite crystal lattice to be released and enhanced the electrochemical reactivity, while the adsorption of copper ions at low temperatures would passivate marmatite, thus inhibiting the reaction process. DFT calculations showed that the energy of the substitution reaction was more negative than that of the adsorption reaction at high temperatures, which further verified the proposed mechanism. 通过实验和密度泛函理论(DFT)模拟计算研究铜离子存在下铁闪锌矿的溶解机制。浸出实验结果表明,铜离子在高温条件下(高于55℃)加速铁闪锌矿的溶解,但在低温条件下(低于45℃)抑制其溶解。导致该现象的原因可能是铜离子与铁闪锌矿间的反应机制随反应温度的升高从表面吸附反应转变为体相取代反应。体相取代反应使铁闪锌矿晶格中更多的锌原子被释放,并且取代反应产物,增强铁闪锌矿表面的电化学反应活性;然而,低温条件下铜离子的吸附会使铁闪锌矿表面钝化,从而阻碍电化学反应的进行。DFT模拟计算表明,高温条件下取代反应的反应能比表面吸附反应能更负,进一步验证了所提出的反应机制。
作者 Xiao-yu MENG Hong-bo ZHAO Yi-sheng ZHANG Shuai WANG Guo-hua GU Guan-zhou QIU 孟晓宇;赵红波;张伊升;王帅;顾帼华;邱冠周(中南大学资源加工与生物工程学院生物冶金教育部重点实验室,长沙410083;中南大学化学化工学院,长沙410083)
出处 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2022年第12期4099-4112,共14页 中国有色金属学报(英文版)
基金 supported by the National Natural Science Foundation of China(No.52174266) the State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization,Kunming,China(No.CNMRCUKF2109) the Education Foundation of Central South University,China(No.GCY2021376Y)。
关键词 dissolution mechanism SPHALERITE MARMATITE copper ion 溶解机制 闪锌矿 铁闪锌矿 铜离子
  • 相关文献

参考文献4

二级参考文献23

  • 1熊小勇,Michelle JACOB-DULERE.铁成分对硫化锌精矿的半导体性质及化学反应性的影响[J].有色金属,1989,41(4):55-67. 被引量:6
  • 2WATLING H R. The bioleaching of sulphide minerals with emphasis on copper sulphides--A review [J]. Hydrometallurgy, 2006,84:81-108.
  • 3BRIERLEY J A. A perspective developments in biohydrometallurgy [J]. Hydrometallurgy, 2008, 94(1/4): 2-7.
  • 4MOHAPATRA S, BOHIDAR S, PRADHAN N. Microbial extraction of nickel from Sukinda chromite overburden by Acidithiobaeillus ferrooxidans and Aspergillus strains [J]. Hydrometallurgy, 2007, 85: 1-8.
  • 5MOUSAVI S M, JAFARI A, YAGHMAEI S, VOSSOUGHI M. Bioleaching of low-grade sphalerite using a column reactor [J]. Hydrometallurgy, 2006, 82: 75-82.
  • 6AKCIL A, CIFTCI H, DEVECI H. Role and contribution of pure and mixed cultures of mesophiles in bioleaching of a pyritic chalcopyrite concentrate [J]. Minerals Engineering, 2007, 20:310-318.
  • 7GOMEZ E, BALLESTER A, GONZALEZ F. Leaching capacity of a new extremely thermophilic microorganism, Sulfolobus rivotincti [J]. Hydrometallurgy, 1999, 52: 349-366.
  • 8GOMEZ C, ROMAN E, BLAZQUEZ M L. SEM and AES studies of chalcopyrite bioleaching in the presence of catalytic ions [J]. Minerals Engineering, 1999, 20(8): 825-835.
  • 9SWAMY K M, NARAYANA K L, MISRA V N. Bioleaching with ultrasound [J]. Ultrasonics Sonochemistry, 2005, 12:301-306.
  • 10SELVI S C, MODAK J M, NATARAJAN K A. Electrobioleaching of sphalerite flotation concentrate [J]. Minerals Engineering, 1998, 11(8): 783-788.

共引文献34

同被引文献30

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部