期刊文献+

基于一步张量学习的多视图子空间聚类 被引量:1

One-step Tensor Learning for Multi-view Subspace Clustering
下载PDF
导出
摘要 现有多视图子空间聚类算法通常先进行张量表示学习,进而将学习到的表示张量融合为统一的亲和度矩阵.然而,因其独立地学习表示张量和亲和度矩阵,忽略了两者之间的高度相关性.为了解决此问题,提出一种基于一步张量学习的多视图子空间聚类方法,联合学习表示张量和亲和度矩阵.具体地,该方法对表示张量施加低秩张量约束,以挖掘视图的高阶相关性.利用自适应最近邻法对亲和度矩阵进行灵活重建.使用交替方向乘子法对模型进行优化求解,通过对真实多视图数据的实验表明,较于最新的多视图聚类方法,提出的算法具有更好的聚类准确性. A surge of the existing multi-view subspace clustering algorithms generally learn the third-order tensor representation first and then fuse the learned representation tensor into a unified affinity matrix.However,since they learn the representation tensor and the affinity matrix independently,they cannot seamlessly capture their high-order correlation.To address this challenge,we propose a novel multi-view subspace clustering method based on one-step tensor learning(OTSC)to jointly learn the representation tensor and affinity matrix.Specifically,we impose the low-rank tensor constraint on the representation tensor to explore the correlation of high-order crossviews dexterously,utilize the adaptive nearest neighbor strategy to reconstruct a flexible affinity matrix,and adopt the alternating direction method of multipliers(ADMM)to optimize our model.Extensive experiments on real multi-view data demonstrated the superiority of OTSC compared to the state-of-the-art methods.
作者 赵晓佳 徐婷婷 陈勇勇 徐勇 ZHAO Xiao-Jia;XU Ting-Ting;CHEN Yong-Yong;XU Yong(Shenzhen Key Laboratory of Visual Object Detection and Recognition,Harbin Institute of Technology,Shenzhen 518055;Peng Cheng Laboratory,Shenzhen 518055)
出处 《自动化学报》 EI CAS CSCD 北大核心 2023年第1期40-53,共14页 Acta Automatica Sinica
基金 广东省自然科学基金(2022A1515010819) 国家自然科学基金(62106063) 深圳市科技创新委员会(GJHZ20210705141812038)资助。
关键词 多视图子空间聚类 张量奇异值分解 一步化学习 图学习 Multi-view subspace clustering tensor singular value decomposition one-step learning graph learning
  • 相关文献

参考文献3

二级参考文献108

  • 1Donoho D L. High-dimensional data analysis: the curses and blessings of dimensionality. American Mathematical Society Math Challenges Lecture, 2000. 1-32.
  • 2Parsons L, Haque E, Liu H. Subspace clustering for high dimensional data: a review. ACM SIGKDD Explorations Newsletter, 2004, 6(1): 90-105.
  • 3Vidal R. Subspace clustering. IEEE Signal Processing Magazine, 2011, 28(2): 52-68.
  • 4Agrawal R, Gehrke J, Gunopulos D, Raghavan P. Automatic subspace clustering of high dimensional data for data mining applications. ACM SIGMOD Record, 1998,27(2): 94-105.
  • 5Lu L, Vidal R. Combined central and subspace clustering for computer vision applications. In: Proceedings of the 23rd International Conference on Machine Learning (ICML). Pittsburgh, USA: ACM, 2006. 593-600.
  • 6Hong W, Wright J, Huang K, Ma Y. Multi-scale hybrid linear models for lossy image representation. IEEE Transactions on Image Processing, 2006, 15(12): 3655-3671.
  • 7Yang A Y, Wright J, Ma Y, Sastry S. Unsupervised segmentation of natural images via lossy data compression. Computer Vision and Image Understanding, 2008, 110(2): 212-225.
  • 8Vidal R, Soatto S, Ma Y, Sastry S. An algebraic geometric approach to the identification of a class of linear hybrid systems. In: Proceedings of the 42nd IEEE Conference on Decision and Control. Maui, HI, USA: IEEE, 2003. 167-172.
  • 9Boult T E, Brown L G. Factorization-based segmentation of motions. In: Proceedings of the 1991 IEEE Workshop on Visual Motion. Princeton, NJ: IEEE, 1991. 179-186.
  • 10Wu Y, Zhang Z Y, Huang T S, Lin J Y. Multibody grouping via orthogonal subspace decomposition. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR). Kauai, HI, USA: IEEE, 2001. 2: 252-257.

共引文献94

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部