期刊文献+

弱对齐的跨光谱人脸检测 被引量:3

Weakly Aligned Cross-spectral Face Detection
下载PDF
导出
摘要 跨光谱人脸检测在活体人脸识别、体温筛查等领域有着重要的应用价值.众所周知,可见光人脸易于检测,然而红外人脸难于检测,因此借助可见光图像的人脸检测结果进而完成红外人脸检测是一种有效的解决方案.但是跨光谱图像之间不可避免的存在偏差,导致检测精度不高.为了解决这一问题,提出了一种弱对齐跨光谱图像的人脸检测算法,该方法基于跨光谱图像之间的偏差设计了候选框布置策略,并在此基础上提出了跨光谱特征表示方法用于选取最优候选框.此外,本文还构建了一个跨光谱人脸数据集.最后,在跨光谱人脸数据集和OTCBVS人脸数据集上的实验结果证明,该方法能够较好地完成红外图像人脸检测任务. Cross-spectral face detection has important application value in the field of face spoof detection and body temperature screening.It is known that it is easy to detect faces in visible light images.However,it is a challenge problem to localize faces accurately in infrared images.Therefore,it is an effective solution to complete infrared face detection based on the face detection results of visible light images.The result of above scheme is nevertheless unsatisfactory since there are unavoidable deviations between cross-spectral images.To solve this problem,this paper proposes a novel face detection algorithm based on weakly aligns cross-spectral images.This method designs the dispatch scheme of candidate box based on the deviation between cross-spectral images,and thus proposes a crossspectral feature representation method to select the best candidate box.In addition,this paper also constructed a cross-spectral face dataset.Finally,the experimental results on the cross-spectral face and OTCBVS face datasets demontrate that the proposed method can complete the task of infrared image face detection well over the competed methods.
作者 闫梦凯 钱建军 杨健 YAN Meng-Kai;QIAN Jian-Jun;YANG Jian(School of Computer Science and Engineering,Nanjing University of Science and Technology,Nanjing 210094;Key Laboratory of Intelligent Perception and Systems for High-dimensional Information of Ministry of Education,Nanjing 210094;Jiangsu Key Laboratory of Image and Video Understanding for Social Security,Nanjing 210094)
出处 《自动化学报》 EI CAS CSCD 北大核心 2023年第1期135-147,共13页 Acta Automatica Sinica
基金 国家自然科学基金(61876083) 国家自然科学基金联合基金(U-1713208)资助。
关键词 弱对齐 跨光谱 人脸检测 计算机视觉 Weakly aligned cross-spectral face detection computer vision
  • 相关文献

参考文献5

二级参考文献37

  • 1陶冰洁,王敬儒,张启衡.采用仿射变换的红外与可见光图像配准方法[J].光电工程,2004,31(11):39-41. 被引量:19
  • 2钱伟新,刘瑞根,王婉丽,祁双喜,王伟,程晋明.基于图像特征方向的各向异性扩散滤波方法[J].中国图象图形学报,2006,11(6):818-822. 被引量:17
  • 3高峰,文贡坚,吕金建.基于干线对的红外与可见光最优图像配准算法[J].计算机学报,2007,30(6):1014-1021. 被引量:26
  • 4Krotosky S J, Trivedi M M. Person surveillance using visual and infrared imagery. IEEE Transactions on Circuits and Systems for Video Technology, 2008, 18(8): 1096-1105.
  • 5Chen Y X, Han C Z. Night-time pedestrian detection by visual-infrared video fusion. In: Proceedings of the 7th World Congress on Intelligent Control and Automation. Chongqing, China: IEEE, 2008. 5079-5084.
  • 6Zhao J P, Yang H M, Ding Y. Medical image registration algorithm research based on mutual information similarity measure. In: Proceedings of the International Symposium on Photo Electronic Detection and Imaging. Beijing, China: SPIE, 2007. 6--9.
  • 7Lu X, Zhang S, Su H, Chen Y. Mutual information-based multimodal image registration using a novel joint histogram estimation. Computerized Medical Imaging and Graphics, 2008, 32(3): 202-209.
  • 8Hrkac T, Kalafatic Z, Krapac J. Infrared-visual image registration based on corners and Hausdorff distance. In: Proceedings of the 15th Scandinavian Conference. Aalborg, Denmark: Springer, 2007. 383-392.
  • 9Kim Y S, Lee J H, Ra J B. Multi-sensor image registration based on intensity and edge orientation information. Pattern Recognition, 2008, 41(11): 3356-3365.
  • 10Caspi Y, Simakov D, Irani M. Feature-based sequence-to- sequence matching. Tnternational Journal of Computer Vision, 2006, 68(1): 53--64.

共引文献52

同被引文献21

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部