期刊文献+

基于改进大脑情感学习模型的车辆纵向跟随 被引量:2

Vehicle longitudinal following based on improved brain emotional learning model
原文传递
导出
摘要 为提高无人驾驶车辆纵向跟随控制算法的安全性,在大脑情感学习模型的基础上,删除了情感暗示信号,并结合径向基神经网络良好的非线性逼近特性,提出了一种间接自适应脑情绪神经鲁棒控制器(iARBERC)和一种证明该控制系统稳定性的Lyapunov分析方法。将其运用到单级倒立摆仿真中,并与径向基神经网络、ARBENC进行数值比较,仿真结果表明:iARBERC具有最快的响应速度、最小的跟踪误差和最优的鲁棒性能,虽然总控制能量有所提高,但偏差在4%以内。最后,将iARBERC应用到无人驾驶车辆跟随控制系统半物理仿真台架中,结果表明,搭载iARBERC的车辆对频繁变化的纵向速度有较好的跟随能力。 In order to improve the safety of longitudinal follow-up control algorithm for unmanned vehicles,an indirect adaptive brain emotion neural robust controller(iARBERC)was proposed based on the brain emotion learning model and the good nonlinear approximation characteristics of radial basis function neural network.The stability of the control system was proved by Lyapunov analysis method.The simulation results show that iARBERC has the fastest response speed,the smallest tracking error and the best robust performance.Although the total control energy was improved,the deviation is less than 4%.Finally,iARBERC was applied to the semi-physical simulation platform of the following control system of the unmanned vehicle.The results show that the vehicle equipped with iARBERC has good following ability to the frequently changing longitudinal speed.
作者 魏民祥 杨佳伟 陈凯 王志浩 沙朝 Min-xiang WEI;Jia-wei YANG;Kai CHEN;Zhi-hao WANG;Zhao SHA(School of Energy and Power,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China)
出处 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2022年第12期2994-3005,共12页 Journal of Jilin University:Engineering and Technology Edition
基金 国家重点研发计划项目(2018YFB2003300):。
关键词 无人驾驶 纵向跟随控制 大脑情感学习 非线性逼近 鲁棒性 半物理仿真 unmanned driving longitudinal following brain emotional learning nonlinear approximation robustness semi-physical simulation
  • 相关文献

参考文献7

二级参考文献34

  • 1王上飞,王煦法.基于大脑情感回路的人工情感智能模型[J].模式识别与人工智能,2007,20(2):167-172. 被引量:7
  • 2Sheikholeslam S.Longitudinal control of a platoon of vehicles Ⅲ:Nonlinear model[R].Berkeley:University of California,1990.
  • 3Stankovic S S,Stanojevic M J,Siljak D D.Decentralized overlapping control of a platoon of vehicles[J].IEEE Trans on Control Systems Technology,2000,8(5):816-832.
  • 4No T S,Chong K T,Roh D H.A Lyapunov function approach to longitudinal control of vehicles in a platoon[J].IEEE Trans on Vehicular Technology,2001,50(1):116-124.
  • 5Shladover S E.Longitudinal control of automated guideway transit vehicles within platoons[J].J of Dynamic System Measurement and Control.1978,100(4):302-310.
  • 6Shladover S E.Longitudinal control of automotive vehicles in close-formation platoons[J].J of Dynamic System,Measurement and Control,1991,113:231-241.
  • 7Sheikholeslam S,Desoer C A.Longitudinal control of a platoon of vehicles Ⅰ:Linear model[R].Berkeley:University of California,1989.
  • 8Fujioka T.Longitudinal vehicle following control for autonomous driving[C].Proc AVFC' 96 Int Symp Advanced Vehicle Control.Aachen,1996:1293-1304.
  • 9Swaroop D,Hedrick J K.String stability of interconnected systems[J].IEEE Trans on Automatic Control,1996,41(3):349-357.
  • 10Zhang J,Suda Y,Iwasa T,et al.Vector Lyapunov function approach to longitudinal control of vehicles in a platoon[J].JSME Int J (Series C),2004,47(2):653-658.

共引文献57

同被引文献4

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部