期刊文献+

Compact nano-void spectrometer based on a stable engineered scattering system

原文传递
导出
摘要 Random scattering of light in disordered media can be used for highly sensitive speckle-based wavemeters and spectrometers. However, the multiple scattering events that fold long optical paths within a compact space also make such devices exceedingly sensitive to vibrations and small disturbances to the disordered media. Here, we show how scattering can be engineered so that it can be used for a compact computational spectrometer that is largely insensitive to environmental factors. We designed and fabricated a three-dimensional pseudo-random nano-void pattern with 62% scattering efficiency. The controlled amount of multiple scattering ensured a sufficiently long optical path for the target resolution of 100 pm, with optimal long-term stability. The 200-μm-thick scattering silica substrate was integrated in a compact assembly with a low-cost camera sensor. The target resolution was achieved for full spectrum measurements while single wavelengths could be determined with 50 pm resolution. Such tailored scattering systems can improve the trade-off among cost, size, stability, and spectral resolution in computational spectrometers.
出处 《Photonics Research》 SCIE EI CAS CSCD 2022年第10期2328-2336,共9页 光子学研究(英文版)
基金 European Research Council(804626) UK Research and Innovation(MR/S034900/1) Royal Academy of Engineering Engineering and Physical Sciences Research Council(EP/N00762X/1).
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部