期刊文献+

分裂可行问题的1-范数正则化方法

The 1-Norm Regularization Method for the Split Feasibility Problem
原文传递
导出
摘要 主要研究了分裂可行问题的1-范数正则化.首先利用1-范数正则化方法,将分裂可行问题转化为无约束优化问题.其次讨论了1-范数正则化解的若干性质,并给出了求解1-范数正则化解的邻近梯度算法.最后通过数值试验验证了算法的可行性和有效性. In this paper,we mainly study the 1-norm regularization of the split feasibility problem.Firstly,the split feasibility problem is transformed into unconstrained optimization problem by using the 1-norm regularization method.Secondly,some properties of 1-norm regularization solution are discussed,and the proximal gradient algorithm for solving 1-norm regularization solution is given.Finally,the feasibility and effectiveness of the proposed algorithm are verified by numerical experiments.
作者 于海 詹婉荣 YU Hai;ZHAN Wan-rong(School of Mathematical Sciences,Luoyang Normal University,Luoyang 471934,China)
出处 《数学的实践与认识》 2022年第11期180-188,共9页 Mathematics in Practice and Theory
基金 国家自然科学基金(11971216,62072222) 河南省高等学校重点科研项目(20A110029)。
关键词 分裂可行问题 正则化 邻近梯度算法 稀疏 split feasibility problem regularization proximal gradient algorithm sparse
  • 相关文献

参考文献2

二级参考文献20

  • 1Candes,E J,Romberg,J,Tao,T. Robust uncertainty principles:Exact signal reconstruction from highly incomplete frequency information[J].IEEE Transactions on Information Theory,2006,(02):489-509.
  • 2Candes,E J,Romberg,J,Tao,T. Stable signal recovery from incomplete and inaccurate measurements[J].Comm Pure Applied Math,2006,(02):1207-1223.
  • 3Candes,E J,Tao,T. Near-optimal signal recovery from random projections:Universal encoding strategies[J].? IEEE Trans Inform Theory,2006,(12):5406-5425.
  • 4Candes,E J,Wakin,M B. An introduction to compressive sampling[J].IEEE Signal Processing Magazine,2008.21-30.
  • 5Cipra,B A. e1-magic[J].SIAM News,2006,(09).
  • 6Combettes,P L,Wajs,R. Signal recovery by proximal forward-backward splitting[J].MULTISCALE MODELING & SIMULATION,2005,(04):11681200.
  • 7Donoho,D. Compressed sensing[J].IEEE Transactions on Information Theory,2006,(04):1289-1306.
  • 8Friedman,J,Hastie,T,Tibshirani,R. A note on the group lasso and a sparse group lasso[Z].arXiv:1001 0736V1,.
  • 9Geobel,K,Kirk,W A. Topics in Metric Fixed Point Theory[A].Cambridge University Press,1990.
  • 10Hebiri,M,van de Geer,S. The smooth-lasso and other e1+e2-penalized methods[J].Electron J Statist,2011.11841226.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部