摘要
荧光显微镜具有对样品损伤小、可特异性成像等优点,是生物医学研究的主流成像手段。随着人工智能技术的快速发展,深度学习在逆问题求解中取得了巨大成功,被广泛应用于诸多领域。近年来,深度学习在荧光显微成像中的应用掀起了一个研究热潮,为荧光显微技术发展提供了性能上的突破与新思路。基于此,首先介绍了深度学习的基本网络模型,然后对基于深度学习的荧光显微成像技术在荧光显微的空间分辨率、图像采集及重建速度、成像通量和成像质量提升方面的应用进行阐述。最后,对目前深度学习在荧光显微成像中的研究进行总结与展望。
Fluorescence microscopy has the advantage of minimal invasion to bio-samples and visualization of specific structures,and therefore,it has been acting as one of mainstream imaging tools in biomedical research.With the rapid development of artificial intelligence technology,deep learning that has outstanding performance in solving sorts of inverse problems has been widely used in many fields.In recent years,the applications of deep learning in fluorescence microscopy have sprung up,bringing breakthroughs and new insights in the development of fluorescence microscopy.Based on the above,this paper first introduces the basic networks of deep learning,and reviews the applications of deep learning in fluorescence microscopy for improvement of spatial resolution,image acquisition and reconstruction speed,imaging throughput,and imaging quality.Finally,we summarize the research on deep learning in fluorescence microscopy,discuss the remaining challenges,and prospect the future work.
作者
熊子涵
宋良峰
刘欣
左超
郜鹏
Xiong Zihan;Song Liangfeng;Liu Xin;Zuo Chao;Gao Peng(School of Physics,Xidian University,Xi’an 710071,China;Hangzhou Institute of Technology,Xidian University,Hangzhou 311200,China)
出处
《红外与激光工程》
EI
CSCD
北大核心
2022年第11期89-106,共18页
Infrared and Laser Engineering
基金
国家自然科学基金(62075177)
国家重点研发计划(2022YFE0100700,2021YFF0700300)
中国轻工业五粮液浓香型白酒固态发酵重点实验室开放基金(2019 JJ012)
中央高校基本科研业务费专项资金(QTZX22039)
中波科技人员交流项目(2021-2022)
瞬态光学与光子技术国家重点实验室开放基金(SKLTOP202001)。
关键词
荧光显微成像
深度学习
超分辨
超分辨显微成像
图像重建
fluorescence microscopy imaging
deep learning
super-resolution
super-resolution microscopy imaging
image reconstruction