期刊文献+

基于改进SSD的铁路障碍物检测研究 被引量:3

Research on railway obstacle detection based on improved SSD
下载PDF
导出
摘要 铁路安全问题中由障碍物造成的安全事故占比大,后果严重。目前,铁路障碍物的检测方法存在检测精度低、实时性差的问题,并且需要耗费大量人力。为此,文中将目标检测技术应用到铁路障碍物检测中,通过实时监控预警辅助人工巡检,提高检测效率。首先选取Faster R-CNN和SSD两种目标检测算法,根据特征提取网络性能对比,选择两种性能较好的特征提取网络VGG-16和MobileNet-v2,完成4种目标检测模型的搭建;然后通过修正参数训练,对两种模型进行对比,确定最佳模型为SSD_VGG-16;最后在此基础上,从反卷积特征融合方面入手,对模型进行改进。测试结果表明:改进后的New_SSD_VGG-16模型的平均精度(mAP)为82.4%,单张图片平均检测时间为0.071 s;相较于Faster R-CNN及未改进的SSD_VGG-16模型,文中模型在保证一定检测准确率的同时,还可以提升检测速度。 In railway safety problems, safety accidents caused by obstacle account for a large proportion, and the consequences are serious. The railway obstacle detection method has the problem of low detection accuracy and poor real-time,and can take a lot of manpower. On this basis,the target detection technology is applied to railway obstacle detection,and realtime monitoring and early warning are used to assist manual inspection,so as to improve the detection efficiency. The Faster RCNN and SSD object detection algorithms are selected,and two better performance feature extraction network VGG-16 and MobileNet-v2 are selected according to the feature extraction network performance comparison, so as to complete the construction of four object detection models. Two models are compared by training the correction parameters to determine the best model as SSD_VGG-16. The model is improved from the aspect of the deconvolution features fusion. The testing results show that the mAP of the improved New_SSD_VGG-16 model is 82.4%,and the average detection time for a single image is0.071 s. In comparison with Faster R-CNN and unimproved SSD_VGG-16 model,the model in this paper can improve the detection speed on the basis of ensuring a certain detection accuracy.
作者 焦双健 刘东 王超 JIAO Shuangjian;LIU Dong;WANG Chao(College of Engineering,Ocean University of China,Qingdao 266100,China)
出处 《现代电子技术》 2023年第2期57-64,共8页 Modern Electronics Technique
关键词 铁路安全 目标检测 SSD Faster R-CNN 铁路障碍物 反卷积模块 特征提取网络 修正参数 railway safety object detection SSD Faster-RCNN railway obstacle detection deconvolution module feature extraction network corrected parameter
  • 相关文献

参考文献7

二级参考文献45

  • 1Clements Mair, Dr Saeed Fararooy. Practice and potential of computer vision for railways[ C]. Condition Monitoringtbr Rail Transport. lEE Seminar, 1998 Nov. 10.
  • 2Jun Xue,Jun Cheng,Li Wang,et al. Visual monitoring- based railway grade crossing surveillance system [C]. 2008 Congress on Image and Signal Processing, 2008.
  • 3Susumu Kubnta, Tsuyoshi Nakano, Yasukazu Okamoto. A global optimization algorithm for Real-time On-board stereo obstacle detection systems [C].Proceedings of the 2007 IEEE Intelligent Vehicles Symposium lstanbul, Turkey, 2007, June 13-15.
  • 4-dayuki 'l-ugawa. Vision-based vehicles in Japan : Machine vision systems and driving control systems [J].IEEE Transactions on Industrial Electronics, 1994 vol. 41, August, 4.
  • 5Fatih Kaleli, Yusuf Sinan Akgul. Vision-based railroad track extraction using dynamic programming [ C ]. Proceedings of the 12th International IEEE Conference on intelligent Transportation Systems, 2009, Oct. 3-7.
  • 6Milan Ruder, Nikolaus Mohler, Faruque Ahmed. Anobstacle detection system [or automated train5[C]. Intelligent Vehicles Symposium, 2003.
  • 7Maneesha Singh, Sameer Singh, Jay Jaiswal, el al. Autonomous rail track inspection using vision based system [ C ]. IEEE International Conference on Computational Intelligence Ibr Homeland Securily and Personal S',dety[ CI. 2006, Oct. 16-17.
  • 8Canny J. A computational approach to e(Jge deteclJon [ J ]. IEEE Trans. Pattern Analysis and Machine Intelligence, 1986, 8(6) : 679-698.
  • 9R Deriche. Using Canny's criteria to derive a recursively implemented optimal edge detector[J]. Computer Vision, 1987 Vol. 1, April, 167 187.
  • 10N Cristianini, J Taylor. An introduction to support ve-:lor machines and other Kernel-based learning methods[M]. Cambridge UP, 2000.

共引文献143

同被引文献30

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部