摘要
随着高速公路建设发展,运行车辆的增加,高速公路团雾天气常造成重大交通事故。高速公路团雾监测预警工作尚未开展,为推进团雾分级预警相关标准实施、减少交通事故,利用公路沿线发光目标物的视频图像分析、前散式能见度仪资料校验,基于大气衰减定律,探究水平能见度与发光目标物光亮度参数的关系。结果表明:公路团雾天气水平能见度与发光目标物光亮度参数之间存在显著相关性;水平能见度与发光目标物光亮度部分参数存在线性关系,并可建立线性回归模型;结合“高速公路团雾预警等级”标准,可对高速公路团雾天气进行分级预警;使用高速公路团雾视频监测预警平台可向交通运营、管理部门、交通参与人发布团雾分级预警信息;发光目标物团雾视频图像监测预警方法具有科学性、创新性、可行性,可实现连续监测预警。发光目标物视频分析技术与(geographic information system,GIS)分析技术、导航技术相结合,将形成及时、准确的高速公路团雾分级预警体系。视频图像团雾监测预警模型将会成为高速公路团雾监测预警的主要手段之一。
With the construction and development of expressway,and the increase of running vehicles,heavy traffic accidents are often caused by the local dense fog on the expressway.The monitoring and early warning work for local dense fog on the expressway is not carried out.In order to promote the implementation of the related standards on classification and early warning for local dense fog,and reduce traffic accidents,the relationship between horizontal visibility and luminance parameters of luminous objects was explored in the research.Based on the law of atmospheric attenuation,the video image analysis of luminous objects along the road,and forward scatter visibility meter data verification.The results show as follows.There is a significant correlation between visibility and luminance parameters of luminous objects in local dense fog weather.There is a linear relationship between horizontal visibility and some parameters for luminance of luminous objects,and a linear regression model can be established.Combined with the“Warning levels of expressway local dense fog”standard,the local dense fog weather can be hierarchically forecasted.The video monitoring and early warning platform can be utilized to release the classification warning information to the traffic operation,management department and traffic participants.The video monitoring and early warning method of luminous objects for the local dense fog is scientific,innovative and feasible,which can realize continuous monitoring and early warning.The combination of video analysis on luminous objects,geographic information system(GIS)and navigation technique will lead to a timely and accurate classification early warning system for local dense fog on the expressway.Monitoring and early warning model using video image will become one of the prominent means for monitoring and early warning of local dense fog on the expressway.
作者
卢振礼
安源
宗晨临
朱海兵
李长明
郑宗杰
LU Zhen-li;AN Yuan;ZONG Chen-lin;ZHU Hai-bing;LI Chang-ming;ZHENG Zong-jie(Key Laboratory for Meteorological Disaster Prevention and Mitigation of Shandong,Jinan 250031,China;Rizhao Meteorological Administration,Rizhao 276826,China;CAMA(Luoyang)Environment Monitoring,Luoyang 471003,China;Highway Monitoring&Response Center,Ministry of Transport of the P.R.C,Beijing 100736,China)
出处
《科学技术与工程》
北大核心
2022年第34期15408-15417,共10页
Science Technology and Engineering
基金
国家重点研发计划(2018YFC150790X)
国家自然科学基金(41975055)
山东标准2018建设项目计划(DB372018939)。
关键词
视频监测
公路团雾
分级预警
video surveillance
local dense fog on the expressway
classification and early warning