期刊文献+

一种水声自适应通信的信噪比估计方法 被引量:1

A Signal-to-Noise Ratio Estimation Method for Underwater Acoustic Adaptive Communication
下载PDF
导出
摘要 针对动态通信中的信噪比(SNR)估计问题,提出了一种适用于跨介质链路自适应通信的SNR估计方法。利用低导频占用率信道估计算法过程中的重构数据对最小均方误差SNR估计算法进行改进,实现时变信道条件下的SNR跟踪。仿真结果表明,所提方法在高SNR条件下能够获得高准确度的估计结果,在低SNR条件下的估计结果能够快速下降,适合链路自适应通信的速率策略调整。所提方法给出的自适应速率调整策略可以有效降低功耗,提高通信数据率。 To solve the problem of signal-to-noise ratio(SNR) estimation for dynamic communication, an SNR estimation method suitable for underwater acoustic adaptive communication in trans-media heterogeneous networks was proposed. The minimum mean square error SNR estimation algorithm was improved by using the reconstructed data in the process of a low pilot occupancy channel estimation algorithm to achieve SNR tracking under time-varying channel conditions. Simulation results show that the proposed method can obtain highly accurate SNR estimation results under high SNR conditions, and the SNR estimation results can decline rapidly under low SNR conditions, which is particularly suitable for the rate-adjustment strategy of link adaptive communication. The adaptive rate adjustment strategy given by the proposed method can effectively reduce the power consumption and improve the communication data rate.
作者 王巍 普湛清 钮彪 陶磊 黄海宁 WANG Wei;PU Zhan-qing;NIU Biao;TAO Lei;HUANG Hai-ning(Institute of Acoustics,Chinese Academy of Sciences,Beijing 100190,China;Suzhou Soundtech Oceanic Instrument Ltd.,Suzhou 215000,China)
出处 《水下无人系统学报》 2022年第6期768-773,共6页 Journal of Unmanned Undersea Systems
关键词 跨介质异构网络 水声通信 链路自适应 信噪比估计 时变信道 trans-media heterogeneous network underwater acoustic communication link adaptive SNR estimation timevarying channel
  • 相关文献

参考文献7

二级参考文献63

  • 1梁波,朱海,陈卫标.大气到海洋激光通信信道仿真[J].光学学报,2007,27(7):1166-1172. 被引量:42
  • 2隋丹,葛临东.一种新的基于改进PASTd的中频信号盲信噪比估计算法[J].电子与信息学报,2007,29(7):1657-1661. 被引量:20
  • 3李娜,乔钢.OFDM水声通信信道估计技术研究[J].现代电子技术,2007,30(23):56-59. 被引量:5
  • 4Li Laosheng, Huang Jie, Zhou Shengli et al. MIMO-OFDM for high rate underwater acoustic communications. IEEE Journal of Oceanic Engineering, 2009; 34(4): 634-644.
  • 5Donoho D L.压缩传感. IEEE Transactions on signal pro- cessing, 2006; 52(4): 1289---1306.
  • 6Berger C R, Zhou Shengli, Preisig J C et al. Sparse chan- nel estimation for multicarrier underwater acoustic com- munication: from subspace methods to compressed sens- ing. IEEE Transactions on signal processing, 2010; 58(3): 1708--1721.
  • 7Cao Shenguo, Gao Xiang. OFDM underwater acoustic channel estimation with compressive sensing. Technical Acoustic, 2011; 30(3): 115--118.
  • 8Anwar K, Matsumoto T. MIMO spatial Turbo coding with iterative equalization. International ITG Workshop on Smart Antennas (WSA), IEEE Computer Society, 2010: 428-433.
  • 9Chen C Y, Chiueh T D. Iterative receiver for mobile MIMO-OFDM systems using ICI-aware list-update MIMO detection. IEEE International Conference on Communica- tions, 2010:1-5.
  • 10Namboodiri V, Liu Hong, Spasojevic P et al. Low complex- ity turbo equalization for mobile MIMO OFDM systems. ICCSP 2011 International Conference on Communications and Signal Processing, 2011:255-260.

共引文献44

同被引文献15

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部