期刊文献+

基于大数据分析的城市热网负荷综合预测研究 被引量:2

Comprehensiveresearch on prediction of urban heat network load based on big data analysis
下载PDF
导出
摘要 随着智慧城市与行业改革的推进,城市供热需要新一轮技术革新。针对国家节能减排号召,实现信息化、高效化供热,需要建立智慧供热平台,以实时监测热网运行,并预测未来热网负荷。采用LSTM(长短期记忆神经网络)深度学习算法,对湖北某地级市气象、热网负荷等数据进行大数据分析,建立预测模型并进行一系列调参优化。利用Python计算机语言编写程序,实现对未来热网负荷预测,并按重要性对数据各项特征进行分析并排名。综上建立智慧供热平台界面,以显示实时数据以及预测数据。 With the advancement of smart city and industry reform,a new round of technological innovation is required in urban heating.Meanwhile,In response to the national call for energy saving and emission reduction and to realize information and efficient heat supply,a smart heat supply platform is needed to monitor heat network operation in real time and predict future heat network load.In this paper,LSTM(Long Short-term Memory)is used to make big data analysis on meteorological and heat network load data of a prefecture-level city in Hubei province,establish prediction model and conduct a series of parameter tuning optimization.A program is written in Python to forecast future heat network load and analyze the ranking of data by their characteristic importance.In summary,a smart heating platform interface is established to display real-time data and forecast data.
作者 果泽泉 蒋雅玲 GUO Ze-quan;JIANG Ya-ling(Jingneng Dongfeng(Shiyan)Energy Development Company Limited,Shiyan 442002,China)
出处 《能源工程》 2022年第6期80-85,共6页 Energy Engineering
基金 国家自然科学基金资助项目(52106008)。
关键词 智慧供热平台 热网负荷预测 长短期记忆神经网络 大数据 smart heating platform prediction of heat network load long short-term memory big data
  • 相关文献

参考文献6

二级参考文献53

  • 1杨博,赵鹏飞.推荐算法综述[J].山西大学学报(自然科学版),2011,34(3):337-350. 被引量:87
  • 2陈柔伊,张尧,武志刚,陈泽淮.改进的模糊聚类算法在负荷预测中的应用[J].电力系统及其自动化学报,2005,17(3):73-77. 被引量:26
  • 3BENGIO Y, DELALLEAU O. On the expressive power of deep archi- tectures[ C ]//Proc of the 14th International Conference on Discovery Science. Berlin : Springer-Verlag, 2011 : 18 - 36.
  • 4BENGIO Y. Leaming deep architectures for AI[ J]. Foundations and Trends in Machine Learning ,2009,2 ( 1 ) : 1-127.
  • 5HINTON G,OSINDERO S,TEH Y. A fast learning algorithm for deep belief nets [ J ]. Neural Computation ,2006,18 (7) : 1527-1554.
  • 6BENGIO Y, LAMBLIN P, POPOVICI D, et al. Greedy layer-wise training of deep networks [ C ]//Proc of the 12th Annual Conference on Neural Information Processing System. 2006:153-160.
  • 7LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning ap- plied to document recognition[ J]. Proceedings of the iEEE, 1998, 86( 11 ) :2278-2324.
  • 8VINCENT P, LAROCHELLE H, BENGIO Y, et al. Extracting and composing robust features with denoising autoencoders[ C ]//Proc of the 25th International Conference on Machine Learning. New York: ACM Press ,2008 : 1096-1103.
  • 9VINCENT P, LAROCHELLE H, LAJOIE I, et aL Stacked denoising autoencoders:learning useftd representations in a deep network with a local denoising criterion [ J ]. Journal of Machine Learning Re- search ,2010,11 ( 12 ) :3371-3408.
  • 10YU Dong, DENG Li. Deep convex net: a scalable architecture for speech pattern classification [ C]//Proc of the 12th Annual Confe-rence of International Speech Comunication Association. 2011 : 2285- 2288.

共引文献809

同被引文献7

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部