期刊文献+

心电图ECG信号自动检测特征提取方法研究进展 被引量:2

Overview of automatic detection method of ECG signal based on feature extraction
下载PDF
导出
摘要 心电图特征参数特征提取技术是人体信号智能化检测领域研究热点之一。论文从差分阈值、模板匹配、小波变换、神经网络等多种特征提取法系统评述常见心电图特征参数自动化检测提取方法,阐述各种方法机理、主要研究应用方向及特点,总结分析指出各方法在不同应用场景下的优缺点。其中神经网络特征提取法准确性高、鲁棒性好,是心电图特征参数提取研究趋势及热点,后续可将神经网络深度学习、自学习与差分阈值、模板匹配、小波变换等特征提取方法相结合,实现更高要求的复杂心电图特征参数检测。 Electrocardiography(ECG) feature parameter extraction technology is one of the research hotspots in the field of human body signals intelligent detection. This paper systematically reviews the common automatic detection and extraction methods of ECG feature parameters, including differential threshold methods, template matching methods, wavelet transform methods, and neural network methods, and explains the mechanisms, characteristics and main application research directions of various methods, and analyzes the advantages and disadvantages of each method in different application scenarios. The neural network feature extraction method has high accuracy and good robustness, and it is the research trend and hot spot of ECG feature parameter extraction. In subsequent stages, deep learning and self-learning of neural network can be combined with differential threshold, template matching, wavelet transformation and other feature extraction methods to achieve higher requirements for complex ECG feature parameter detection.
作者 陈韬文 宋家骏 彭湘安 刘桂雄 Chen Taowen;Song Jiajun;Peng Xiang'an;Liu Guixiong(School of Mechanical and Automotive Engineering,South China University of Technology,Guangzhou 510640,China;Guangdong Zhuhai SupervisionTesting Institute of Quality and Metrology,Zhuhai 519060,China)
出处 《电子测量技术》 北大核心 2022年第19期106-112,共7页 Electronic Measurement Technology
基金 广东省市场监督管理局科技项目(2022CZ14)资助。
关键词 自动化检测 心电图 特征提取 神经网络 automatic detection electrocardiography feature extraction neural network
  • 相关文献

参考文献8

二级参考文献53

  • 1赵羿欧,刘扬.一种改进的差分阈值心电检测算法[J].计算机工程,2011,37(S1):347-348. 被引量:12
  • 2李翠微,郑崇勋.ECG自动分析技术的发展[J].国外医学(生物医学工程分册),1994,17(1):15-22. 被引量:23
  • 3Freeman K. Singh A. P wave detection of ambulatory ECG.Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 1991, 13(2) : 0647
  • 4Escalona O, Cavidia L, Writht G. A robust procedure for P wave detection and segmentation in high resolution 12-lead ECG. 18^th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Amsterdam,1996,5(4):1365
  • 5Reddy BRS, Elko PE. Christenson DW, et al. Detection of P wave in resting ECG: a preliminary study. Computes in Cardiology, 1992, 19:87
  • 6Vasquez C, Hernandez AI, Carrault G, et al. Feasibility of neural network based QRS-T cancellation schemes for P wave detection. Computers in Cardiology, 1998, 25:625
  • 7Murthy ISN. Analysis of ECG from polezero models. IEEE TRANS on BME, 1992,39(7) :741
  • 8Juan Pablo Martinez, Rute Almeida, Salvador Olmos, et al. A wavelet-based ECG delineator: evvaluation on standard databases. IEEE Transaction on Biomedical Engineering, 2004.
  • 9全国无线电技术委员会.查看详情[S]{H}北京:中国计量出版社,2008.
  • 10费业泰.误差理论与数据处理[M]{H}北京:机械工业出版社,2007.

共引文献31

同被引文献15

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部