期刊文献+

基于DBN-MPA-LSSVM的无绝缘轨道电路故障诊断研究 被引量:7

Research on fault diagnosis of jointless track circuitbased on DBN-MPA-LSSVM
下载PDF
导出
摘要 针对区间无绝缘轨道电路故障类型复杂、诊断精度低等问题,从故障特征提取和特征分类两方面出发,提出了一种深度置信网络(DBN)和海洋捕食者算法(MPA)优化最小二乘支持向量机(LSSVM)的故障诊断方法。首先,将集中监测数据和状态标签输入到DBN,以半监督的方式进行降维和特征提取,从而挖掘轨道电路不同故障特征信息;然后,采用MPA智能算法对LSSVM的惩罚因子和核函数参数进行寻优并建立最优MPA-LSSVM诊断模型;最后,将DBN提取的特征样本导入诊断模型进行轨道电路的故障分类识别。DBN-MPA-LSSVM诊断模型充分利用了DBN在特征提取过程中的逐层提取优势以及LSSVM在解决小样本情况下高维模式识别的优势。实验验证与对比分析表明,DBN-MPA-LSSVM模型测试集准确率为98.33%,MPA优化算法较PSO、GWO、GA算法模型诊断准确率分别提高了6.11%、3.89%、3.33%,平均准确率为97.98%,为基于数据驱动的轨道电路故障诊断技术提供了一种新的方法。 Aiming at the problems of complex fault types and low diagnosis accuracy of section jointless track circuit, a fault diagnosis method of least squares support vector machine(LSSVM)optimized by deep belief network(DBN)and marine predators algorithm(MPA)is proposed from the two aspects of fault feature extraction and feature classification. Firstly, the centralized monitoring data and status labels are input into DBN, and the dimensionality reduction feature extraction is carried out in a semi supervised way, so as to mine the different fault feature information of track circuit. Then, the intelligent algorithm MPA is used to optimize the penalty factor and kernel function parameters of LSSVM, and the optimal MPA-LSSVM diagnosis model is established. Finally, the feature samples extracted by DBN are introduced into the diagnosis model for fault classification and identification of track circuit. DBN-MPA-LSSVM diagnostic model makes full use of the advantages of layer by layer extraction of DBN in the process of feature extraction and the advantages of LSSVM in solving high-dimensional pattern recognition in the case of small samples. Experimental validation and comparative analysis show that the DBN-MPA-LSSVM model test set accuracy is 98.33%, and the MPA optimization algorithm improves the diagnosis accuracy by 6.11%, 3.89%, and 3.33% compared with PSO, GWO, and GA algorithm models, respectively, with an average accuracy of 97.98%, which provides a new data-driven rail circuit fault diagnosis technology based on method.
作者 林俊亭 王帅 Lin Junting;Wang Shuai(School of Automation and Electrical Engineering,Lanzhou Jiaotong University,Lanzhou 730070,China)
出处 《电子测量与仪器学报》 CSCD 北大核心 2022年第9期37-44,共8页 Journal of Electronic Measurement and Instrumentation
基金 国家自然科学基金(52162050) 中国铁道科学研究院科研基金(2021YJ205)项目资助。
关键词 无绝缘轨道电路 深度置信网络 海洋捕食者算法 最小二乘支持向量机 故障诊断 jointless track circuit deep belief network marine predators algorithm least squares support vector machine fault diagnosis
  • 相关文献

参考文献10

二级参考文献79

  • 1魏红宁.决策树剪枝方法的比较[J].西南交通大学学报,2005,40(1):44-48. 被引量:43
  • 2林韶峰,张宏建.基于Rayleigh表面波的无损测压方法[J].仪器仪表学报,2005,26(9):976-979. 被引量:4
  • 3Gnesi, S., Lenzini, G., Latella, D.,et al. An Automatic SPIN Validation of a Safety Critical Railway Control System[A]. Proceedings Dependable Systems and Networks International Conference[C],2000.6:119~124
  • 4CENELEC prEN50129-1999. Railway Applications: Safety Related Electronic Systems for Signalling[S],1999
  • 5Neil Storey. Safety-Critical Computer Systems[M]. Addison-Wesley, 1996
  • 6IEC61508-2000. Functional Safety of Electrical/Electronic/Programmable Electronic Safety-related Systems[S],2000
  • 7CENELEC prEN50126-1999,Railway Applications:The Specification and Demonstration of Reliability,Availability,Maintainability and Safety(RAMS)[S],1999
  • 8CENELEC prEN50128-1998,Railway Applications:Software for Railway Control and Protection Systems[S],1998
  • 9张东煜,许化龙.基于模糊神经网络的导弹故障诊断专家系统[J].计算机测量与控制,2009,17(1):124-125. 被引量:9
  • 10李世平,周代刚,杨尚达,张子良.基于改进LSSVM的动态测量误差实时预测方法[J].中国测试,2009,35(3):20-23. 被引量:3

共引文献109

同被引文献88

引证文献7

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部