期刊文献+

基于混合损失ResNet34-UNet的路面裂缝分割方法 被引量:6

Research on pavement cracks segmentation method based on mixed loss ResNet34-UNET
下载PDF
导出
摘要 路面裂缝图像由于其形状细长、弯曲复杂等特点,在模型训练中存在裂缝样本不平衡问题,为此提出了一种基于混合损失函数的ResNet34-UNet路面裂缝分割方法。该方法借助于U-Net结构,以ResNet-34作为主干提取网络,根据数据集中裂缝像素所占比例对BCEFocal Loss和Tversky Loss进行权重调整,并使用调整后的BCEFocal Loss和Tversky Loss组成混合损失函数,平衡了裂缝样本输入和输出不平衡问题。对比实验表明文中的网络模型的F1分数(0.7018)、MIoU(0.8306)均为最高,说明该分割算法能有效地对路面裂缝进行准确分割。 Due to the characteristics of long and thin shape and complex bending, the pavement crack image has the problem of uneven crack samples in model training. Therefore, a Resnet34-UNET pavement crack segmentation method based on mixed loss function is proposed in this paper. With the help of U-NET structure, ResNET-34 was used as the backbone to extract the network, and the weights of BCEFocal Loss and Tversky Loss were adjusted according to the proportion of crack pixels in the data set. The adjusted BCEFocal Loss and Tversky Loss were used to form a mixed Loss function to balance the imbalance between input and output of fracture samples. Comparative experiments show that the F1 score(0.7018) and MIoU(0.8306) of the network model in this paper are both the highest, indicating that the segmentation algorithm can effectively and accurately segment pavement cracks.
作者 汪家宝 牟怿 WANG Jia-bao;MOU Yi(School of Electrical and Electronic Engineering,Wuhan Polytechnic University,Wuhan 430023,China)
出处 《武汉轻工大学学报》 CAS 2022年第6期71-75,113,共6页 Journal of Wuhan Polytechnic University
关键词 图像分割 裂缝识别 ResNet U-Net 混合损失函数 image segmentation crack identification ResNet. U-Net mixed loss function
  • 相关文献

参考文献8

二级参考文献31

  • 1王刚,肖亮,贺安之.脊小波变换域模糊自适应图像增强算法[J].光学学报,2007,27(7):1183-1190. 被引量:28
  • 2Koutsopoulos H N, Downey A B. Primitive-based classification of pavement cracking images [J]. Journal of Transportation Engineering, 1993, 19(3) : 136-143.
  • 3Koutsopoulos H N, Sanhouri I E, Downey A B. Analysis of segmentation algorithms for pavement distress images [ J 1. Journal of Transportation Engineering, 1993, 116(6): 868-873.
  • 4Cheng H D, Miyojim M. Automatic pavement distress detection system [J]. Journal of Information Sciences, 1998, 108(1/2/3/4) :219-204.
  • 5Huang Y, Xu B. Automatic inspection of pavement cracking distress ]-J2. Journal of Electronic Imaging, 2006, 15(1): 13017-13023.
  • 6Tsai Y C, Kaul V, Mersereau R M. Critical assessment of pavement distress segmentation methods [J]. Journal of Transportation Engineering, ASCE, 2010, 136(1) : 11-19.
  • 7Alekseychuk O. Detection of crack-like indications in digital radiography by global optimization of a probabilistic estimation function E D 1. Berlin: BAM, 2006.
  • 8英红.水泥混凝土路面裂缝、填缝料及错台检测方法研究[D].上海:同济大学,2011.
  • 9Skingley J, Rye A J. The hough transform applied to SAR images for thin line detection I Jl. Pattern Recognition Letters, 1987, 6(1): 61-67.
  • 10Li L, Sun L J, Tan S G. An efficient way in image preprocessing for pavement crack images EC2//The twelfth COTA international conference of transportation professionals. Beijing ~ American Society of Civil Engineers, 2012: 3095-3103.

共引文献240

同被引文献49

引证文献6

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部