期刊文献+

基于曝光融合的无人机航拍图像增强算法 被引量:5

Image enhancement method based on exposure fusion for UAV aerial photography
下载PDF
导出
摘要 针对无人机航拍图像光照不均匀及自然雾导致影像质量退化问题,提出了一种无人机航拍图像增强算法。利用改进的低照度图像增强算法均衡亮度对比度;为了解决均衡后图像过增强问题,提出了联合去雾及曝光融合的色彩矫正增强方法;为了保留增强图像的边缘纹理信息,设计了一种效果更佳的细节增强算法,处理后统计直方图更为平滑,可在一定程度上抑制部分噪声,细节纹理信息更强。实验结果表明,所提的航拍图像增强算法,能够有效解决因光照不均或自然雾引起的影像退化现象,提高了无人机航拍图像的质量,主客观图像质量评价指标优于现有绝大多数主流算法,性能更佳。 Aiming at the problem of image quality degradation caused by uneven illumination of UAV aerial images and natural fog, a UAV aerial image enhancement algorithm was proposed. Firstly, an improved low-illumination image enhancement algorithm is used to balance the brightness and contrast;secondly, in order to solve the image over-enhancement after equalization, a color correction enhancement method combining dehazing and exposure fusion is proposed;finally, in order to preserve the edge texture information of the enhanced image, a detail enhancement algorithm with better effect is designed. After processing, the statistical histogram is smoother, some noise can be suppressed to a certain extent, and the detailed texture information is stronger. The experimental results show that the present aerial image enhancement algorithm can effectively solve the image degradation caused by uneven illumination or natural fog. The quality of UAV aerial images is improved, and the subjective and objective image quality evaluation indicators are better than most of the existing mainstream algorithms, and the performance is better.
作者 李亮亮 任佳 王鹏 吕志刚 孙梦宇 李晓艳 高武奇 LI Liangliang;REN Jia;WANG Peng;LYU Zhigang;SUN Mengyu;LI Xiaoyan;GAO Wuqi(School of Mechatronic Engineering,Xi′an Technological University,Xi′an 710021,China;School of Information and Communication Engineering,Hainan University,Haikou 570228,China;School of Electronics and Information Engineering,Xi′an Technological University,Xi′an 710021,China;School of Optoelectronic Engineering,Xi′an Technological University,Xi′an 710021,China;School of Computer Science and Engineering,Xi′an Technological University,Xi′an 710021,China)
出处 《西北工业大学学报》 EI CAS CSCD 北大核心 2022年第6期1327-1334,共8页 Journal of Northwestern Polytechnical University
基金 国家自然科学基金(62171360、61961160706) 西安市智能兵器重点实验室(2019220514SYS020CG042) 2022年度陕西高校青年创新团队项目 海南省自然科学基金创新研究团队项目(620CXTD434) 海南省自然科学基金高层次人才项目(620RC557) 澳门科技发展联合基金(0066/2019/AFJ)资助。
关键词 无人机航拍图像增强 影像退化 曝光融合 多尺度细节增强 UAV aerial photography image enhancement image degradation exposure fusion multi-scale detail enhancement
  • 相关文献

参考文献6

二级参考文献41

  • 1Nasrollahi K, Moeslund T B. Super-resolution:a comprehensive survey. Machine Vision and Applications, 2014, 25(6):1423-1468.
  • 2Balure C S, Kini M R. A survey-super resolution techniques for multiple, single, and stereo images. In:Proceedings the 5th International Symposium on Electronic System Design (ISED). Surathkal:IEEE, 2014.215-216.
  • 3Getreuer P. Contour stencils:total variation along curves for adaptive image interpolation. SIAM Journal on Imaging Sciences, 2011, 4(3):954-979.
  • 4Freedman G, Fattal R. Image and video upscaling from local self-examples. ACM Transactions on Graphics, 2011, 30(2):Article No.12.
  • 5Kawano H, Suetake N, Cha B, Aso T. Sharpness preserving image enlargement by using self-decomposed codebook and Mahalanobis distance. Image and Vision Computing, 2009, 27(6):684-693.
  • 6Zhang Y Q, Liu J Y, Yang W H, Guo Z M. Image super-resolution based on structure-modulated sparse representation. IEEE Transactions on Image Processing, 2015, 24(9):2797-2810.
  • 7Zhang Y Q, Xiao J S, Li S H, Shi C Y, Xie G X. Learning block-structured incoherent dictionaries for sparse representation. Science China Information Sciences, 2015, 58(10):1-15.
  • 8Yang C Y, Huang J B, Yang M H. Exploiting self-similarities for single frame super-resolution. In:Proceedings of the 10th Asian Conference on Computer Vision (ACCV). Queenstown, New Zealand:Springer, 2011.497-510.
  • 9Glasner D, Bagon S, Irani M. Super-resolution from a single image. In:Proceedings of the 12th IEEE International Conference on Computer Vision (ICCV). Kyoto, Japan:IEEE, 2009.349-356.
  • 10Schulter S, Leistner C, Bischof H. Fast and accurate image upscaling with super-resolution forests. In:Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, MA:IEEE, 2015.3791-3799.

共引文献139

同被引文献45

引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部