期刊文献+

欧氏平面上的Bonnesen型对称混合不等式

Bonnesen-style symmetric mixed inequality in the Euclidean plane
下载PDF
导出
摘要 研究从积分几何方法得到对称混合等周不等式、Bonnesen型对称混合不等式的统一证明。这些Bonnesen型不等式的特殊情形就是经典的等周不等式和Bonnesen型不等式。 The symmetric mixed isoperimetric inequality and the Bonnesen-style symmetric mixed inequalities are obtained by the method of integral geometry.The special cases of these Bonnesen inequalities are the classical isoperimetric inequalities and Bonnesen inequalities.
作者 李晓 周家足 LI Xiao;ZHOU Jiazu(School of Mathematical and Sciences,Chongqing Normal University,Chongqing 401331,China;School of Mathematics and Statistics,Southwest University,Chongqing 400715,China)
出处 《陕西师范大学学报(自然科学版)》 CAS CSCD 北大核心 2023年第1期50-54,共5页 Journal of Shaanxi Normal University:Natural Science Edition
基金 国家自然科学基金(12071378) 重庆师范大学基金(20XLB012) 重庆市自然科学基金(CSTB2022NSCQ-MSX0259) 重庆市教委科学技术研究项目(KJQN202100527)。
关键词 积分几何 对称混合等周亏格 对称混合等周不等式 BONNESEN型不等式 integral geometry symmetric mixed isoperimetric deficit symmetric mixed isoperimetric inequality Bonnesen-style inequality
  • 相关文献

参考文献4

二级参考文献25

  • 1LI Ming & ZHOU JiaZu School of Mathematics and Statistics,Southwest University,Chongqing 400715,China.An isoperimetric deficit upper bound of the convex domain in a surface of constant curvature[J].Science China Mathematics,2010,53(8):1941-1946. 被引量:17
  • 2Osserman R., Bonnesen-style isoperimetric inequality, Amer. Math. Monthly, 1979, 86: 1-29.
  • 3Ren D., Topics in integral geometry, Sigapore: World Scientific, 1994.
  • 4Santalo L. A., Integral geometry and geometric probability, Reading, Mass, Addison-Wesley, 1976.
  • 5Zhou J., On the Willmore deficit of convex surfaces, Lectures in Applied Mathematics of Amer. Math. Soc., 1994, 30: 279-287.
  • 6Hsiang W. Y., An elementary proof of the isoperimetric problem, Ann. of Math., 2002, 23A(1): 7-12.
  • 7Zhang G., A sufficient condition for one convex body containing another, Chin. Ann. of Math., 1988, 4: 447-451.
  • 8Zhang G., Zhou J., Containment measures in integral geometry, Integral geometry and Convexity, Singapore: World Scientific, 2006, 153-168.
  • 9Zhou J., A kinematic formula and analogous of Hadwiger's theorem in space, Contemporary Mathematics, 1992, 140: 159-167.
  • 10Zhou J., The sufficient condition for a convex domain to contain another in R^4, Proc. Amer. Math. Soc., 1994, 212: 907-913.

共引文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部